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ANNUAL TECHNICAL PROGRESS REPORT
ON

REACTION ZONE MODELS FOR VORTEX SIMULATION
OF TURBULENT COMBUSTION

(AFOSR Grant # F49620-92-J-0445DEF)
Principal Investigator: Ahmed F. Ghoniem

Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

SUMMARY

During the first year of this effort, we focused on two related problems: (1) establishing
the validity of the thin flame model when used to compute flow-combustion interactions in a
turbulent shear layer; (2) developing an efficient methodology to compute the unsteady strained
flame structure when the flame thickness is much smalier than the flow scale. In the first effort,
the transport element method was applied to compute (a) a reacting flow in which combustion
proceeds according to a single-step, temperature dependent Arrhenius reaction, and (b) a mixing-
limited model in which Schvab-Zeldovich variables are used to obtain the infinite speed
chemistry results. The results of both computations showed that, at high Damkohler numbers,
while there is a small error in the prediction of the total burning rate using the second approach,
the second model accurately estimates the effect of combustion on the flow dynamics in terms of
volumetric expansion and vorticity generation. Thus, implementing a detailed flame sheet model
using a flowfield decomposition should yield an accurate simulation for the flowfield while
maintaining the overall computational requirements below what is needed in the original
analysis. Work on the second project has resulted in a more efficient model to compute the
flame structure under conditions of unsteady strain. The computational model is based on a
series of mathematical transformations which reduce the governing equa .ons to time-dependent
reaction-diffusion equations. Model results have been used to determine the flame characteristic
response time and the effect of strain-Lewis number on the burning velocity. The model is
currently being extended to multistep chemistry.
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I. OBJECTIVES .
The objectives of this work are: . 5
(1) To develop, using methods of asymptotic expansion, a computational framework for N
the simulation of turbulent combustion phenomena by deriving equations which govern the flow
and combustion in different, physically-distinct regions in the domain. This will be independent R
of the numerical method, or methods, used to integrate these equations and hence will have
applications beyond vortex simulations;
(2) To develop subscale fundamentally based models which can be used to obtain large .
eddy simulations using vortex methods. Subscale models, in this case, will be obtained through
the application of the renormalization group theory to the equations governing vorticity
stretching and tilting on scales lower than numerically resolvable scales. The application of ,
RNG in physical vorticity space is motivated by our solutions which show that the properties of
vortex lines at the small scales follow closely the RNG predictions.
(3) To develop fundamentally based flame structure models using the equations obtained » °
in (1) where flow combustion interactions are represented by the effect of the time-dependent
stretch exerted by the outer flow on the flame structure. One important respect of these models
will be the incorporation of multistep chemical kinetics algorithms to accurately capture flow »
combustion interactions when it is dominated by radical concentration and diffusion;
(4) To modify the transport element method; a Lagrangian scheme which we developed
to simulate reacting species transport, to act as a “coupling” algorithm between the solutions »
obtained for the outer flow and the inner flow.
The developed methodology will be applied to study mixing and combustion in reacting
shear flow at high Reynolds numbers. Effect of strong density variations, high heat release rates »
at elevated Damkohler numbers, and high Mach numbers will also be investigated.
»
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IL PERSONNEL
During the period of 1992-1993, funding was used to support the work of the following
students:

(1)  Marios Soteriou who completed his Ph.D. thesis in June 1993 and stayed on as a
postdoctor.

?) Van Luu, a Ph.D. student working on distributed reaction zone combustion model.

(3)  Constantin Petrov who completed his master’s work in June 1993 and stayed on as a
Ph.D. student working on the thin flame combustion model.

1.

HI.1

XA cumerical methodology has been introduced to enable the study of a post-transitional
spacially developing exothermically reacting shear layer over a substantial range of the
governing parameters. The Transport Element Method, commonly used in the simulation of
non-reacting flows is further developed to accommodate an exothermically reacting flowfield.
The scheme is Lagrangian, grid-free and adaptive and solves the unaveraged, time dependent and
coupled scalar transport-reaction and Navier-Stokes equations respectively, in their scalar-
gradient and vorticity forms. It exploits the Shvab-Zeldovich formulation to provide solutions
for both moderately fast and infinitely fast reactions. For finite reaction speeds, Arrhenius
kinetics are used.

Numerical results were used in a preliminary study of the effects combustion
exothermicity on both the flow and scalar fields. We found that the externally forced flowfield is
substantially modified in the presence of combustion and a reduced growth is experienced
mainly due to an alteration of the mechanism by which the vortical structures, which characterize
the flow, interact. This, together with the decreased density within the mixing region leads to

decreased efficiency of combustion.
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The simpler, computationally less demanding infinite reaction speed model was found to ‘
be an effective model of the detailed finite reaction problem as long as the reactions involved in , .
the latter are fast compared to the flow, the reaction zone is thin, and abrupt transient phenomena .
such as quenching are avoided. Detail of this study are presented in Appendix I of this report.
»
1.2 Model of an Unsteady Strained Flame
The transient response of a flame to an unsteady sqgin rate was analyzed using a series of »
mathematical transformations. Initially, the flame yas’]ﬁéatcd in the stagnation plane. Attime
t=0 the unsteady strain rate was applied. Two t;asic patterns of the strain rate are considered: a
step function, and a sinusoidal wave. ,The flame response was characterized by two parameters: »
(1) the burning velocity and, (2) the flame location. The influence of the Lewis number and the
strain rate on these two parameters and on the relaxation time was investigated. For unity
Lewis number, and within the range of compressive strains characteristic for a turbulent jet » PY
flow (200 - 500 1/sec), the shapes of the temperature and mass fraction profiles remain almost
unchanged. This leads to a burning velocity which is only slightly dependent on the strain rate.
In the case of non-unity Lewis number the profiles are significantly altered even by relatively »
weak strain rates. This happens due to the interaction of unbalanced heat and concentration
diffusion and convection. The changes in the profiles produce significant variation in the
burning velocity. Some analytical results are obtained for the relaxation time of flame as a »
function of the strain rate and thermo-chemical parameters. The analytical derivations are based
on the application of the integral approach in the transformed domain. In order to investigate the
receptivity characteristics of flame, the periodic strain rate is applied. Over a wide range of »
frequencies, flame demonstrates periodic response. The average value of the burning velocity is
very close to the burning velocity of a flame under the average strain; phase shift between the
burning velocity and strain rate fluctuations is approximately constant and equal to -1.377 . This »
pattern is violated only when the period of the strain rate oscillations is much lower than the
4 »
° ° ° ° ° ° ) ° ° o



diffusion time scale. The analysis of the flame response suggests that the steady siate
assumption can be used with a reasonable accuracy in a flamelet modeling, although the phase
shift should be taken into account. Extinction strain rate which we define as the strain rate when
the steady state flame location crosses the stagnation plane for the first time, is an exponential
function of the heat release. This suggests that, in order to get adequate values of the extinction
strain using a simplified chemical kinetics mechanism, one should pay particular attention to the
chemical reactions which maintain the energetic balance of the system. Detail of this work is
presented in Appendix IL.

I3  Stability and Numerical Analysis of Wake Flows

The linear instability of a family of inviscid, two-dimensional, variable-density shear
layers and wakes is investigated. Vorticity profiles corresponding to a monotonically increasing
velocity profile are first examined. A larger family of initial vorticity distributions which model
the merger of two unequal vorticity layers of opposite sign is then considered. The latter is
obtained by superimposing on the former a wake component, characterized by a spread, 8, and a
velocity deficit, W. The initial density distribution resembles a temperature spike and is
described by a thickness, o, and a temperature ratio, Ty. The stability properties of the layers are
interpreted in terms of a four-dimensional parameter space (W,8,7,,6). The non-linear evolution
of the flowfield is illustrated using the transport element method.

Flowfield stability exhibits strong sensitivity to the details of the density distribution. In
the absence of the wake component, the stability properties of the heated layer are divided into
three categories according to the thickness of the density profile, 0, and the vorticity thickness,
dw. For 0 >> §, instability of the Kelvin-Helmholtz mode in a uniform-density flow is
recovered. When G ~ Gy, the shear layer mode is inhibited; while this trend persists for ¢ < éy,
the layer becomes characterized by the appearance of additional short-wavelength unstable
modes which become dominant as 6 decreases and Tr increases. Addition of a wake component
is shown to alter this behavior, and to oppose the stabilizing effects of heat release. In this case,

the shear layer mode always dominates the wake mode, and the presence of heated sublayer has a



weak effect on the instability of the vorticity layer when s large, but may influence the phase
speed of unstable waves whenever the zones of high vorticity and high density gradient coincide.

Detail of this work is presented in Appendix I1I.
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APPENDIX 1

VORTEX-TRANSPORT ELEMENT SIMULATION OF THE
EXOTHERMICALLY REACTING SPACIALLY DEVELOPING SHEAR
LAYER

Marios C. Soteriou and Ahmed F. Ghoniem

Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

A numerical methodology is introduced which enables the study of a post-transitional
spacially developing exothermically reacting shear layer over a substantial range of the
governing parameters. The Vortex-Transport Element Method, commonly used in the simulation
of non-reacting flows is further developed to accommodate an exothermically reacting flowfield.
The scheme is Lagrangian, grid-free and adaptive and solves the unaveraged, time dependent and
coupled scalar transport-reaction and Navier-Stokes equations respectively, in their scalar-
gradient and vorticity forms. It exploits the Shvab-Zeldovich formulation to provide solutions
for both moderately fast and infinitely fast reactions. For finite reaction speeds, Arrhenius
kinetics are used.

Numerical results are used in a preliminary study of the effects combustion exothermicity
on both the flow and scalar fields. It is seen that the externally forced flowfield is substantially
modified in the presence of combustion and a reduced growth is experienced mainly due to an
alteration of the mechanism by which the vortical structures, which characterize the flow,
interact. This, together with the decreased density within the mixing region leads to decreased
efficiency of combustion.

The simpler, computationally less demanding infinite reaction speed model is found to be
an effective model of the detailed finite reaction problem as long as the reactions involved in the
latter are fast compared to the flow, the reaction zone is thin, and abrupt transient phenomena
such as quenching are avoided.




LINTRODUCTION

Post-transitional exothermically reacting shear layers are commonly present in many
combustion systems. The flow, which is a manifestation of the growth of the instability of the
shear region between two reacting fluids at different velocities represents an important
mechanism by which reactants mix and bumn, in such systems. Experimental [e.g.1] studies
indicate that the vortical structures which dominate non-reacting shear layers persist in their
reacting counterparts despite the substantial effects of the combusting fieid on the flowfield.
These structures are found to coincide with the region where product exists, thus exemplifying
their fundamental importance to the combustion process. Combustion, in turn, strongly
influences their evolution and interactions via the release of chemical energy and the resulting
variable density field.

The effects of the combustion heat release and of the related variable density field on the
flowfield have been the subject of significant interest recently. Even in the absence of reacticn
the presence of a variable density field substantially alters the properties of the flow, modifying
the growth of the mixing region the entrainment from the free streams and the unsteady evolution
of the eddies |2]. Experimental studies [3,4,1] have indicated that in the presence of an
exothermically combusting field the shear layer growth is reduced, resulting in diminished
efficiency of mixing and burning. This was initially a rather surprising finding since combustion
was anticipated to increase the size of the mixing region via volumetric expansion. Numerical
studies mainly restricted to the simulation of temporally evolving reacting shear layers [5-7],
have, to some extend, been ablz to reproduce this behavior. In this work the applicability of the
idealized, temporally evolving flow model. in simulating reacting shear layers is fundamentally
questioned. The temporal model aims at approximating the shear layer flow via a Galilean
space-time transformation: a computational domain is selected which is moving with the mean
flow velocity and which describes a small section of the flowfield. This section is defined by the
flow time scale in such a way as to include one or two vortical structures. The small size of the
domain, as compared to that necessary in a spacial layer simulation, is the major source of the
savings mentioned earlier. The problem with the use of temporal layers lies in the fact that the
boundary conditions in the streamwise direction (i.e. at the inlet and exit) of the domain are not
explicitly known. For this reason, artificial periodic boundary conditions are imposed. As a
result the actual flow cannot be reproduced exactly from such a calculation. For example, the
asymmetry imposed by the velocity ratio, which results in the tendency of the uniform density
shear layer to intrude more into the slower of the two streams, cannot be captured. Additionally,
the streamwise asymmetry in the shape of the vortical structures is also lost. For the reacting
field, the limitations are more devastating. The periodic boundary conditions remove any spacial
evolution of the combustion-related properties of material which crosses the domain in the




streamwise direction; only temporal evolution is permitted. On the other hand, the same material
experiences significant flow-related evolution. This is an uncommon situation since it requires
the flow speed to be higher than the combustion speed, i.e. high Karlovitz number. For a real
fuel, characterized by a high Damkohler number, such a condition would unavoidably lead to
quenching (termination of the reaction due to excessive flow stretch). In the temporal
simulations noted above, this problem does not arise due to an additional, and apparently
independent, low Damkohler number assumption. What is evident from the above discussion
though, is that the applicability of temporal simulations is in fact restricted to low Damkohler
number combustion and unphysical solutions would result if higher values of this parameter were
to be used.

Spacially evolving shear layer numerical studies [8,9), which attempt a much more
physical description of the flow, have, on the other hand, for the most part been restricted to
cases where the effects of combustion on the flowfield are negligible (low combustion heat
release). Such studies have been used to discern the structure of the reaction zone and the effects
of the reaction speed (Damkohler number) on the relative location of the reaction zone with
respect to the large structures. It was concluded that at small Damkohler number, the reaction is
most intense near the center of the large eddy, while as the Damkohler number increases, the
reaction zone moves outwards towards the outer edges of the eddies. It was also found that,
under conditions of unity stoichiometry, a strong similarity exists between the products
concentration field and the vorticity field.

In contrast, in this work a numerical methodology capable of dealing with significant
combustion exothermicity is pre -ented and implemented in the simulation of the forced, spacially
developing shear layer.

IL FORMULATION

A two-dimensional, post-transitional reacting shear layer is considered. Gravitational
effects are negligible. Compressibility effects are permitied under the low Mach number
assumption. According to this assumption, the flow speed is much smaller than the speed of
pressure wave propagation. Hence, spacial pressure variations reach equilibrium rapidly when
compared to the flow timescale and, thus, for thermodynamic considerations they appear
negligibly small. This can easily be seen by considering that the momentum equation for this
case, reduces to the statement that spacial gradients of the thermodynamic pressure are equal to
zero. But while pressure variations are small when compared to the thermodynamic pressure,
they are not negligible when compared to the other forces governing fluid motion. Thus by
rescaling them with the flow dynamic pressure one can ascertain their effect on the flowfield.
This is expressed in the more traditional momentum equation used herein. (This distinction

L 3



between the thermodynamic and dynamic pressure in a low Mach number combusting svstem
was initially proposed in ref.[S] where a detailed derivation of the approximate equations of
motion is presented.)

While, under the low Mach number assumption, combustion has an insignificant effect
on the spacial thermodynamic pressure variation, it can substantially alter this pressure in time.
This is certainly true in a constant volume domain where the overall density is constant and
substantial pressure changes take place as combustion heat is released and the fluid temperature
is raised. In an open (infinite volume) domain, on the other hand, combustion primarily alters
the fluid temperature and density resulting to approximately constant pressure. In this work the
flow is partially confined (see Section IV). Nevertheless, constant pressure combustion is still
assumed since in the cross-stream direction the confining walls are substantially far from the
combusting region and in the streamwise direction the domain is relatively short. The validity of
this assumption is further assessed from the results by comparing the streamwise dynamic
pressure change of each fluid stream to the corresponding inlet dynamic pressure. Thus, in this
formulation the thermodynamic pressure is treated as a constant both in space and time and
hence it is absent from the non-dimensionalized equations. The pressure appearing in the
momentum equation is the flow dynamic pressure.

Combustion is assumed to take place according to a single step reaction which consumes
two reactaats, one from each stream, to yield a single product. The chemical kinetics are of the
Arrhenius type. The transport properties are constant. All species are assumed to behave as
perfect gases with equal molecular weights, specific heats and mass diffusion coefficients. The
Lewis number is equal to unity. Diffusion effects are assumed small (high Reynolds and Peclet
number flow). This allows higher order diffusion mechanisms to be neglected. Hence, thermal
diffusion (Soret effect), second order diffusion terms in the scalar equations arising from
products of density and scalar gradients, and heat production due to fluid dynamical viscous
dissipation, are all neglected.

Non dimensionalization is carried out using a length scale, Lo a velocity scale, U, and
temperature, To, and density, p,, scales. (The tildes indicate dimensional variables. In what
foliows, absence of the tilde denotes a non-dimensionalized variable). The actual values of these
scales are specified in Section IV. The simultaneous use of density and temperature scales
allows for the different scaling of the thermodynamic pressure as compared to that of the
dynamic pressure which is scaled via the density and the velocity scales.

Under the above assumptions the non-dimensionalized governing equations are:

dp

-aT+pV-u=0 1)

Continuity
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du YR 12
Momentum Sl 5 +Re Vu 3}
Equation of State pT=1 3)
Chemical Reaction ¢ My+1; = (1+6)n, 4)
o dsj 12 W
Temperature-Species el +Q = (%)
i1t 2T 3taw
. ¥ T ]
with S; T!YlezgYp
Q |ty -0y -1 1%
() Y1+Y2+Y,=1) (6)
and where W = Arp? Y; Y2 exp(- IT!) )
u = (u,v) is the velocity vector in a right-handed Cartesian coordinate system x = (x,y) and t is
. _[9 d). . d_9 . .
the time. V -(ax’ay) is the gradient operator and il + u-V the Lagrangian-material

derivative. p is the dynamic pressure and p and T are the fluid mixture density and temperature
respectively. T; denotes species i, i=1,2 being the reacting species and i=p being the product.

Y= Pi is the mass-fraction for species i (p; is the species’ partial density) and w is the reaction
p T~ oy
rate. Re is the Reynolds number, Re = y—?,hl with v being the kinematic viscosity. Similarly, Pe
v

is the Peclet number Pe = —U—L,ﬁ?- @ is the thermal diffusivity, which under the unity Lewis
a

number assumption is equal to the mass diffusivity D which, in tum, is the same for all species.

Apolo

[+]

Aq is the frequency factor, A¢= . ¢‘ and ¢ are the molar and mass stoichiometry ratios

respectively (¢ = ¢ =L, M; being the molar mass of species i). Qo is the enthalpy of reaction,

M
M,

~

Q= ..é%f- where C;, is the mixture specific heat. T, is the activation temperature Ts =§—f‘.l_.‘-.
Cplo °

where E, is the activation energy and R the universal gas constant.



For primarily numerical reasons the above equations are recast into non-primitive
variable form. For the equations governing fluid motion this is initiated via the use of the
Helmbholtz decomposition [10],

Helmholtz Dec. U=y +Up+Ue 8)

which recognizes that the velocity can be split into a vorticity induced solenoidal component, u,,
(Vxup=Vxu, V.uy =0) and two irrotational components; one induced by volumetric
expansion, U, and the other by the flow boundary conditions up ). The vortical component is
obtained from the definition of the vorticity wk = Vxu (k is the unit vector normal to the plain of
motion) and by the use of the streamfunction () i.c.

Streamfunction Vzw =- Uy = Vx(ka) (9a,b)
The irrotational components are obtained from the relevant continuity equation via the
introduction of the concept of the velocity potential (9):

Expansion V2¢e =- -pl%% ue = Vo, (10a,b)

"Potential” V¢, =0 up = Ve (11a,b)

The evolution of the vorticity field required in the evaluation of the vortical velocity component
is described by the vorticity equation established by taking the curl of the momentum equation :

Vorticity dé:lﬁ +(Vu) ok= YE"TV"— + .ng vk (12)
P

Density related quantities in both equations (10a) and (12) are obtained from the temperature
field via the equation of state.

To simplify the scalar transport equations, Shvab-Zeldovich (S-Z) non-reacting variables
(A, y) are introduced:

Q.0
1+¢
These variables are constructed from combinations of the primitive reacting scalars in such a way
that the equations governing their transport (obtained from algebraic manipulations of equations
(5)) are void of reaction terms, and are hence much simpler to deal with: i.e.

S-Z Variables A=Y1-9Y; y=T- Yp (13a,b)

dd 12




where ~ B=2Aory.

Depending on the ai)plication. the particular choice of these variables can also result in further
simplifications. A good example of this is illustrated by the y variable used here. By combining
the temperature with the product mass-fraction into one variable, one can capitalize on the fact
that if the initial conditions :mply that these two properties are initially directly related (i.e.
¥(x,0)=1), then equation (14) above suggests that they will remain related at all later times. This,
in essence, reduces the equations to be solved by one, since the solution for 7y is trivially known
(i.e. ¥(x,0)=1).

The main disadvantage in the use of Shvab-Zeldovich variables is that they impose the
substantial limitations on the choice of the transport properties noted earlier. This is because in
order to reduce the equations, the mass-diffusion coefficients had to be assumed equal for all
species and the Lewis number had to be chosen equal to unity.

In analogy to the treatment of the flow equations, the Shvab-Zeldovich scalar transport
equations are recast into gradient form:

S-Z Gradient ‘;—%+g-Vu+gx( 0§)=-P%V2g (15)

where g=Vp
Evidently, integration of the solutions of the gradient equations provides the scalar field only
within a constant. This constant is defined by the boundary conditions (Bp). Thus, in an
approach similar to the Helmholtz decomposition of the velocity field, the total Shvab-Zeldovich
scalar field solutions are obtained by adding these two components.

S-Z Scalar Dec. B=Bs+Bp (16)

In the limiting case of infinite reaction rate combustion, where the reaction zone collapses
onto a line and reactant coexistence is prohibited, the Shvab-Zeldovich variable solutions
together with the equation of the conservation of the species mass-fractions (eq.6) are able to
provide a complete description of the reacting field. i.e.

Infinite reaction: A20 Y =X, Y;=0, Yp=1-A (17a)

ASO Y;=0, Yp=-A vy, =141 (17b)
¢ ¢

The temperature field is obtained using the definition of y. If the reaction speed is finite, on the
other hand, the Shvab-Zeldovich solutions and the mass-fraction conservation equation do not
contain all the information necessary to construct the reacting field. At least one reacting scalar




must be explicitly obtained. In the formulation presented here, this scalar is chosen to be the
product mass fraction, i.c

dY 2 .

e ly w
Product & Pe Yp +(1+¢) o (18)
must be solved. Once the product mass-fraction solution is known, the reacting species solutions
can be constructed according to

Finite reaction: Y= }i‘r(l—Yﬁ Y;= AIILI—XL) (19)
+¢ +¢

and the temperature solution by using the definition of Y, to completely describe the reacting
scalar field. It should finally be noted that the non-reacting flow case is easily included in the
finite reaction speed case by simply specifying Yp = 0.

OLNUMERICAL SCHEME

The numerical scheme by which the flow and scalar field equations of the previous
section are to be solved is the Vortex-Transport Element Method. A non-reacting version of this
scheme was presented in ref. [11 ].

The numerical integration of the governing equations is initiated by discretizing the

vorticity, "material density derivative" (- .PL%) Shvab-Zeldovich scalar gradients and product

mass fraction via a generic discretization function. It distributes a property { over a field of
elements which are characterized by a finite area, A;, and by a strength, {;, locally distributed via
a radially symmetric core function, f5. The discretization function is also used to reconstruct the
discretized quantities at later times and is:

N
LoD = X L A f5(x-xih) (20a)
i=1
where Xi = (i(x,t) is the element location. The core function which is characterized by the core
radius & within which the most significant contribution of each element is experienced, is a

second order Gaussian, i.e.

f5(6) = —Lexp- ) (20b)
xd &

and it enables a second order accuracy of discretization under the condition that core overlap
between neighboring elements is maintained [12].




The velocity induced by the discretized vorticity field is obtained via a discrete,
desingularized Biot-Savart law resulting from the solution of equation (9):

N
ue(x.) = Y Tt Kslx-xi(t) (21a)

1=1
where ["(t) = w;(t)A(1) is the element circulation and K is the desingularized kemel of the Biot
Savart law given by:

Kg(x) =- %—u"z—)[l - exp(- (g)z)] (21b)

The expansion component of velocity is obtained in a similar fashion, i.e. via a discrete,
desingularized equivalent of the convolution resulting from the governing Poisson equation
(eq.10):

N
uxn=- Y ¢ -pk%p)‘(t) A VGs(x-1) (222)
i=1 !

where VGg is the desingularized gradient of the Poisson equation and is given by

VGy(x) = - (2—"1:—2)[1 - exp(- @2)] (22b)

The component of the velocity field induced by the boundary conditions is obtained by
solving the governing Laplace equation (eq.11) under a Schwartz—Christoffel conformal
mapping transformation. The total velocity is hence obtained via the Helmholtz decomposition.

The Shvab-Zeldovich scalar solutions are obtained from the corresponding discrete
gradient fields in an analogous manner since the two quantities may also be related via a Poisson
equation, i.e.

Vp=Vyg (23)
Hence the Shvab-Zeldovich scalar fields may be expressed as
N
Bx.D) = Y gi(t) Ai(t) - VGg(x-:(t) + By 24

i=1

where B, is the integration constant obtained from boundary conditions. The complete reacting
scalar field is obtained by using these solutions in conjunction with the product mass-fraction
solutions which are obtained from equation (20).

The time evolution of the flow and scalar fields is zstablished by numerically integrating
the governing transport equations locally to each element. This is done in two fractional steps.




The first step, the non-diffusive step, includes all processes other than diffusion. During this step
the element locations are updated by numerically integrating

du _
e u (P4))

that is, the elements are advected with the local velocity vector. This defines element
trajectories, as well as material lines. The element vorticity is updated by locally integrating the
corresponding circulation equation,

%:Jl‘:’]—‘x%&l A 26)

were the pressure gradient has been substituted by the material acceleration using the relevant
momentum equation. Both equations (25) and (26) are integrated via Euler predictor-corrector
schemes and the material acceleration in equation (26) is established by a two-step iteration
forward-difference scheme.

The direct integration of the corresponding Shvab-Zeldovich scalar gradient transport
equation,

B g Vurmx@ D=0, @n

is avoided. Recognizing that under the physical requirements of the problem, isoscalar and
material lines may coincide and considering the kinematical evolution of the latter (relating the
change in length of a material line elemental segment (81) to the velocity difference at its ends,
i.e.

d@) _ 5

equation (27) may be transformed into a simpler form [11}, i.e.

__S_i_] =0 with g=g 8 =lon (29a,b.c)
1

where 11 is the unit vector normal to the material line. Equation (29) simply implies that along a
material-isoscalar line

S _ consiant 30)
p 8L,

The constant is specified by the initial conditions. 8l; as well as n; are readily available due to
the Lagrangian nature of the scheme which trivially provides the topology and evolution of
material lines.

For the product mass-fraction field evolution (finite reaction speed chemistry) an
alternative approach is followed. The concept of product particles is introduced. Such particles
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are positioned at the center of the computational elements and are convected with the latter by
the flow. Product-particles directly experience the combustion process. This is accomplished by
integrating (via an Euler predictor-corrector scheme) the relevant transport equation, i.e.

dy
P ;
(1+¢) w 31

for each particle. The corresponding element strengths are then established from the particle
values via the discretization function (eq.20). The effects of any error associated with such a
discretization are minimized by correcting the product particle values at the end of the complete
numerical integration, i.c. after the diffusion step, via knowledge of their values at the end of the
first integration step, i.e. after the convection-reaction process.

In the second fractional integration step diffusion effects are accounted for. This is
accomplished via the core expansion scheme [13]. Diffusion is simulated by expanding the
element core size according to:

&ean = 87 + £ (32)
where C=Re for {=m and C=Pe for {=g or Y,,. This expression is arrived at by using the element

field, defined by the discretization function (eq.(20)) to analytically solve the governing diffusion
equation,

dc_j_ 2
Fraar A )

under *he assumptions that the strength and area of the element are constant and that the core
radius is only a function of time.

The presence of the baroclinic torque in the evolution of the vorticity field requires
knowledge of the density gradient field. This in turn necessitates knowledge of the product
mass-fraction gradient field. In the infinite reaction speed case this is trivially established from
the S-Z gradients. For the finite reaction speed on the other hand it is established by
differentiating the product mass-fraction field given by equation (20) and is

N
VY = 3 Yo A VEsx-x) (34)
i=1

where

viso) =25 g (35)
5
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The severe stretching of the Lagrangian mesh used in the discretization of the transported
quantities, which increases the distance between neighboring elements, may lead to the
detenoration of the accuracy of the solution. To overcome this problem, a scheme of local mesh
refinement is adopted whereby elements are continuously introduced and deleted to ensure core
overlap. Strong overlap is enforced near the inlet of the domain by allowing a small maximum
separation between ncighboring elements. This condition is relaxed further downstream by
increasing this threshold value, thus allowing for efficient computations without compromising
the accuracy of the numerical scheme.

IV.FLOW GEOMETRY, AND BOUNDARY CONDITIONS

The geometry of the computational domain together with some of the boundary
conditions are shown in figure 1. The shear layer evolves in a two dimensional channel of height
H and length Xmax. between two parallel streams (1-top, 2-bottom) which mix downstream of a
thin splitter plate. The top and bottom wails are modeled as rigid, slip, impermeable and
adiabatic planes These conditions are satisfied by mapping the entire channel region on the
upper half of a complex plane, and using the appropriate irage system of the vortex and
transport elements. At the downstream section, a condition of vanishing vorticity and scalar
gradient is used as outflow boundary condition, and is applied by removing the elements which
cross the x=Xmax plane. At the inlet section, the velocity-vorticity, Shvab-Zeldovich variables-
gradients and product mass fraction (for finite reaction speed simulations) profiles are specified

as follows:
Velocity Ux=0,y,t) = U "2U2 +U '2U2 ert '2’5 ) (36)
0 §)2
Vorticity a(x=0,y,t) = - U&liz exp(- &y 2'25) ) 37
S-Z variables A(x=0,y,t) = I.T" + l—;—?— erf(%s—) yx=0,y,) =1 (38a,b)
S-Z gradient VA©O,y,t) = (0, a%(o,y,:)) V10,y,)=(0,0) (39a,b)
_ 2
with %(x=0,y,t) - 110 exp( (y-0-5) ) (40)
dy o o2
12
° ° ° ° ° 'Y °
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Product - Yp(x=0,y,t) = Yp .. exp(-(y'—g’zsf—) 41)

In the above profiles, as well as in the numerical simulations, the channel height is used as the
space non-dimensionalizing scale. & is the standard deviation of the Gaussian profiles defining
the inlet vorticity, gradient of the A variable and the product mass-fraction. Its relation to the
scaling length (H) is obtained by requiring that two wavelengths of the most unstable mode of
the uniform density shear layer (obtained from linear stability analysis) fit within the channel
height. Finally, it is noted that in the numerical simulations the velocity field is scaled with the
top stream velocity (U;) whereas the density and temperature fields by the common to both
streams (see next paragraph) values of these properties (Po, To ).

The profile for the A Shvab-Zeldovich variable is obtained by assuming that each of the
two fluid streams consists of a single reactant (i.e. A;=1, A2=-¢) which at the inlet experiences an
errorfunction type profile. Profiles of this type are not unlike the experimentally observed
profiles for the two reacting species. For the y Shvab-Zeldovich variable, the assumption is made
that the temperature and product mass-fraction profiles are directly related, yielding a constant
value profile. Under the behavior imposed by the governing equations such an assumption is
valid for flows which prior to combustion were of uniform temperature and in which no product
was present.

In order to avoid having to deal with ignition phenomena at the inlet for the finite
reaction speed case (note the temperature dependent nature of the reaction rate (eq.7)), a finite
amount of product is introduced there. This is described by the Gaussian profile given above
(eq.41) where Y, . is chosen as 0.4. The direct relation of the product mass-fraction and the
temperature implies that the temperature at the inlet is raised and hence combustion becomes
possible. In the infinite reaction speed case where reactants react on contact, ignition problems
do not exist and the inlet product mass-fraction profile is uniquely defined by the Shvab-
Zeldovich variables as explained in Section II (eq.17). Hence, the scalar field inlet profiles
specified above which are used in the numerical simulation of the flow, specify the inlet species
profiles shown in figure 2. The related temperature and density profiles can straightforwardly be
deduced from the product mass-fraction profile as earlier explained.

Initialization of the calculation is carried out by assuming that the inlet conditions persist
throughout the domain. Hence, the vorticity-S-Z gradient-product layer between the two fluids,
defined by the above inlet profiles is discretized by distributing vortex-transport-product
elements over nine material layers (lines) lying within the support of vorticity. The elements are
of square area of side h=0.0195. The value of the core radius is 8=0.0234 (i.c.5>h).

Finally, external forcing is implemented at the inlet. The forcing signal, shown in figure
3, consists of in-phase components of the most unstable mode of the uniform density layer and
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its subharmonic. both at an amplitude A=A,=0.025. The interaction of the two forcing
frequencies gives rise to two types of eddies. The eddy which forms during the part of the cycle
which the two components are in phase - the "fundamental” eddy - is larger than the one which
forms in the second part of the subcycle - the "subharmonic” eddy - during which the two
components are out of phase. The forcing is implemented by displacing elements at the inlet
according to the forcing signal.

Y.RESULTS

Simulations at both finite and infinite reaction speed were carried out with the double aim
of a) establishing a preliminary assessment of the effects of the presence of combustion on both
the flow and scalar fields and b) of providing a comparison between the finite and infinite
reaction speed models.

The time step for all calculations was At=0).1 and the length of the domain X1ax=5. The

fluid dynamical parameters were kept constant for all runs. The inlet velocity ratio is mgl:o.s
1

and the Reynolds number (and Peclet number since Pe=Re) based on the velocity difference
across the layer (AU=U,-Uz) and on the vorticity layer's original thickness (d=20) is
Reg = A!-de = 500. It should be noted that the Reynolds number could have also been defined

with respect to the channel height H, since, as was earlier explained, H is characteristic of the

largest cross-stream scale of the layer. The resuiting Reynolds number is Rey = AU;H- = 6400.

For the finite reaction speed cases the chemical parameters were specified as follows: the
. . E Agd AfH
activation temperature is T,==—2- = 10, the frequency factor Ag,=——=100 (Agf= =1280),

the mass stoichiometry ratio ¢=1 and the enthalpy of reaction (referred to in this text as "heat

release™) Qf?—_?_f- =6. The corresponding Damkohler number (Da=t%f- where tdF%E is the
he

plo
diffusion time scale and tche%:cxp(%) the chemical reaction time scale) and the Karlovitz
f
number (Ka&zﬁ‘ﬁ where tnw=—d— is the flow time scale) are Dag= 1026 and Kag= 0.49,
fiw AU

respectively [Dag= 168110, Kay= 0.038]. The ranges of values of these non-dimensional
numbers, which for a given flow are controlled by the chemical time scale, are limited by the
available computational resources. This is not only because increases in the reaction speed will,
evidently, necessitate increases in the temporal numerical resolution, but also because under
these conditions the reaction zone thickness is reduced, thus requiring higher spacial numerical
resolution as well. The values of the Damkohler and Karlovitz numbers used here are,
nevertheless, not far from physically realistic values, describing a reasonably fast reaction . It
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should be pointed out though that the same is not necessarly true of the parameters used to
create them. Specifically, the values of the activation temperature and the frequency factor,
while higher than those used in previous work [7] are sull quite low. This is a consequence of
the fact that due to the nature of the reaction rate the activation temperature has an independent
effect on the reaction zone thickness. Even if the effect of increasing the activation temperature
on the reaction time scale, is counterbalanced by an appropriate frequency factor, the reaction
zone thickness is, nevertheless, reduced. Hence, spacial resolution limits the range of values of
the activation temperature and the limitations on the reaction time scale, in turn, limit the
frequency factor.

The infinite reaction speed model requires only one chemical parameter, the heat release.
This is specified to be the same as that used in the finite reaction speed simulations, i.e. Q,=6

To assess the effect of combustion on the flowfield, the reacting calculations were
repeated but this time the effects of the variable density field on the fluid dynamical field were
ignored. That is, while the density was allowed to vary due to combustion, the density used in
the evolution of the flowfield was kept constant and equal to its inlet value. Since, under the
carlier noted assumptions, the variation in the density field is the only means by which the
reacting field can influence the flowfield, then by keeping the flow density invariant the
flowfield remains ignorant of the presence of the reacting field. In what follows, the cases where
the flow and combusting fields are decoupled in this manner, will be termed as the “paow
uniform” cases. Evidently, as far as the flow is concerned these cases are indistinguishable from
uniform density non-reacting calculations. Hence, in the analysis of the flowfield they will be
treated as such. For the scalar field on the other hand these cases differ from uniform density
calculations and hence they will be properly distinguished.

Figure 4 displays a flowfield comparison between the non-reacting layer (left) and layers
reacting at finite (middle) and infinite (right) reaction speeds. The shear layer is depicted using
the vortex elements and their local velocity vectors. The velocity is plotted with respect to the
inlet mean velocity to highlight the relative motion within the layer. To describe the evolution of
the flowfield in time, three sequential time frames are shown. In order to be able to provide a
clearer description of the flow, which is partly inhibited by the small size of the flow
visualizations of figure 4, the first time frame of each case shown in the figure is reproduced in
figure S at an enhanced scale.

It is seen that in all cases, and in agreement with experimental evidence, the flow is
dominated by large scale coherent vortical structures. The repetitiveness of the flowfield
evolution for each case, a manifestation of the external forcing, is also evident. But the flow
behavior varies between the different cases and comparison between them yields two major
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conclusions: a) Exothermic combustion significantly modifies the flowfield, resulting in reduced
layer growth, and b) the flowfield characteristics of the finite and infinite reaction speed cases,
while substantially different from those of the non-reacting flow, exhibit striking similarities.

Companson betwee:. the non-reacting and reacting cases indicates that density vanation
resulting from the combustion heat release modifies the flowfield by altering the shape, evoluuon
and interactions of the vortical structures. During the initial rollup, the fundamental eddies
appear less rolled and larger in overall size (area) than their uniform density, non-reacting,
counterparts. This increase in size though, appears to be mainly in the streamwise direction
resulting in more elongated, more elliptical structures. Similar features are experienced by the
subharmonic eddies which, additionally, appear much less coherent. Further downstream, where
the eddies start to interact, major differences are experienced. In the non-reacting flow, each
subharmonic eddy interacts with its downstream fundamental eddy. The two, pair (by spiraling
towards each other in a clockwise direction) to form a larger, coherent and highly elliptical
structure which continues to rotate, exposing its major axis to the streamwise flow. This results
in significant growth of the shear layer. In the presence of reaction this process is fundamentally
altered. Eddy pairing is resisted and the subharmonic eddy appears to be torn between its two
neighboring fundamental eddies (with the downstream eddy absorbing its larger part) in a much
more continuous process than pairing. The resulting larger structures appear less elliptic and
coherent than before and they tend to keep their major axis more aligned with the streamwise
direction. This impairs the layer cross-stream growth significantly. Finally it is noted that the
convective speed of the vortical structures is also altered in the presence of reaction. Figure 5
displays this more clearly. Eddies formed during the same subcycle of the forcing function
(indicated by arrows) appear to move faster in the reacting flow. This feature is suspected to be
primarily a consequence of the volumetric expansion associated with the combustion heat release
which in semi-confined flow like the one considered here will cause a streamwise acceleration.

The similarity of the flowfield between the finite and infinite reaction speed cases on the
other hand is substantial. The eddy evolution particularly at the earlier parts of the domain is
strikingly similar. Eddy interactions are by tearing in both cases and some minor differences can
only be detected towards the end of the domain where for the infinite reaction speed case the
subharmonic eddy appears to be able to survive longer. The effect of reactica on the eddy speed
also appears to be similar for the two cases.

Figures 6 and 7 which describe features of the mean flow indicate that the above noted
instantaneous behavior is repetitive and thus biases the mean flow characteristics. Figure 6

presents comparisons of the mean velocity profiles (at a fixed downstream location (x=3))
between the non-reacting flow and the two reacting cases; finite (6a) and infinite (6b). The

16




characteristics of the profiles shown, are qualitatively typical of most downstream locations
within the computational domain. The steepening of the profiles in the presence of reaction,
which suggests smaller shear layer growth, is obvious. The similarity between the finite and
infinite reaction case profiles is also noted. The shifting of these profiles to higher speeds, which
was earlier suggested by the faster moving structures, is evident. It is interesting to note that for
the reacting cases the mean velocity profile loses its monotonic nature, typical of uniform density
shear layers. Instead, close to the fast free stream an overshoot, and close to the slow free stream
an undershoot of the respective neighboring free stream values are experienced. This type of
features of the mean velocity profile were also documented in ref.[6] for a reacting temporal
shear layer and were attributed to the presence of the baroclinic generation of vorticity. Evidence
supporting this argument was also established in our earlier work with non-reacting variable
density shear layers [14], where similar types of overshoots and undershoots were experienced.

In figure 7 the vorticity thickness defined with respect to the local free streams as
Ui(x) - Ux(x)
\ay s

(where the overbar indicates a time-averaged property) and is, hence, representative of the
spacial cross-stream thickness of the layer is plotted versus the streamwise coordinate. (It should

8y = (42)

max

be pointed out that the definition of the vorticity thickness used here is not necessarily impaired
by the non-monotonical nature of the velocity profile since the overshoots-undershoots are small
(<2%AU). An alternative definition of 8, from the points of the mean velocity profiles where
the velocity varies by 5% of the free-stream value -i.e. the typical experimental approach- would
give rise to similar results since the overshoots-undershoots would not be detected.) As in figure
6 the comparison in each part of figure 7 is between the non-reacting and reacting flow. As
expected, a drop in the vorticity thickness growth for the reacting cases is clearly seen. This drop
is most significant towards the end of the domain where the effect of the inhibition of eddy
pairing is most pronounced. Thus, the alteration of the eddy interactions represents the most
important mechanism by which the combustion exothermicity reduces the forced shear layer
growth.

Figure 8 displays the instantaneous vorticity fields for the three cases of figure 5. It
should be noted that only the 0<x<3 part of the computational domain is indicated. As expected,
the correlation with the vortical structures is evident. The same is also true for the similarity of
the finite and infinite reaction speed cases. But the figure makes clear another difference
between the non-reacting and reacting cases. The former is characterized by vorticity of a single
sign (negative) while the latter by vorticity of both signs; a field of mainly negative vorticity with
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islands of positive vorticity surrounding the vortical structures. The origin of the uniformly
negative vorticity of the non-reacting case and the overwhelmingly negative field of the reacting
cases should come as no surprise since the inlet vorticity is negative (top stream is fastest,
resulting in clockwise rotation). The positive vorticity of the reacting cases must be a
manifestation of the baroclinic generation since from the mechanisms of vorticity modification
present here, only this one may change the vorticity sign. The presence of the positive vorticity
around the vortical structures must have important effects on the flow and is suspect for a
significant number of the differences between the non-reacting and reacting flowfields. It
should, for example, with its anticlockwise rotation, be responsible for the overshoots and
undershoots of the average velocity profiles as earlier suggested. One could speculate that its
location close to the free streams may inhibit entrainment of irrotational fluid inside the vortical
structures. By creating a tendency towards counterclockwise rotation on the outskirts of the
eddies it may also be responsible for the inhibition of pairing, which as was earlier noted is
initiated by a clockwise spiraling of eddies around one another. To be able to clarify these
points, a closer scrutiny of all the mechanisms by which combustion and the resulting variable
density field modify the vorticity field needs to be carried out. This is currendy being
accomplished and the results will be presented in a future article (ref. [15] ).

The similarity of the vorticity fields of the two reacting cases, which like earlier findings
points to the effectiveness of the infinite reaction speed model to reproduce the effect of the
actual, finite reaction speed combustion on the flowfield, also provides an internal consistency
check of the numerical scheme. As noted in the previous paragraph, the dual sign of the vorticity
field of the reacting cases is a manifestation of the baroclinic generation of vorticity. This
mechanism of vorticity modification requires knowledge of the density gradient field. As was
earlier seen (Section III) due to the different numerical approaches in dealing with the product
mass-fraction field in the finite and infinite reaction speed cases, the density gradient is
established in quite different ways for the two cases. The qualitative agreement of the vorticity
fields of figure 8 points to the validity of both approaches.

As a final tool in the investigation of the effect of the combusting field on the flowfield,
statistically averaged quantities are considered. In a variable density field, such as the one
resulting from the combustion heat release this is usually done using Favre (density weighted)
averaging. The advantage of this type of averaging over the more traditional Reynolds averaging
is that it results in simpler averaged equations by avoiding terms involving density fluctuations.
Its major disadvantage lies in the fact that the resulting extra terms in the governing equations,
while fewer in number, are less physically intuitive. Furthermore, they do not incorporate all the
features of the fluctuating (in the Reynolds sense) field, since fluctuating quantities are part of
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the Favre averaged quantities, while at the same time they involve the effect of the average
density.

In direct analogy to Reynolds averaging, the implementation of Favre averaging of the
equations of motion results in extra terms formed by the products of the fluctuating quantities. In
the two dimensional case considered in this work these quantities are:

pUV (=puv), pu’, pv° @3)
As pointed out in ref.[16] the first term, the turbulent stress term, represents the rate of ransfer of
momentumn flux. The second and third terms are indicative of the flow's turbulent kinetic energy
per unit volume in the streamwise and cross stream directions respectively and are representative
of the turbulence intensity. The total flow turbulent kinetic energy can be defined as :

=
KE=PY TPV ;_p" (44)

As noted earlier, due to the presence combustion heat release, the density decreases
significantly and this results in decreased Favre turbulent quantities (eqs.43 and 44). It should be
clear though that this does not necessarily imply that the oscillating nature of the flow is
diminished. It only indicates to the fact that the mean density is reduced. To clarify this point,
the paow uniform case with the variable density of its reacting field used in the calculation of the
turbulent quantities, will be provided for comparison. Since this latter case experiences the exact
same flowfield as the non-reacting case then the corresponding Reynold's turbulent quantities are
identical. Hence, any difference in the Favre turbulent quantities between the two cases can only
be a consequence of the variable density and will thus provide an indication of the effect of the
decreasing mean density.

Figure 9a presents a comparison of turbulent stress profiles between the finite reaction
speed case, its corresponding uniform flow-density case (as explained above) and the non-
reacting case. Figure 9b presents an analogous comparison for the infinite reaction speed case.
Profiles are displayed at a fixed downstream location (x=2.5) and are typical of the profiles
experienced in the whole field. It is clearly seen that the region of significant fluctuations is
related to the shear layer region. This implies that the shear layer represents the prime
mechanism of turbulent mixing of the two streams. The bell-Gaussian shape of the profiles, in
analogy to those of the Reynolds shear stress in a uniform density flow [17], clearly indicates
that turbulent momentum transfer from the free streams to the shear region represents the latter's
prime mechanism of growth. But the figure also clearly shows that this transfer is significantly
diminished in the presence of combustion heat release. Furthermore, it is seen, that the effect of
the decreased mean density, while significant, cannot account for the whole drop in the turbulent
stress. This suggests that heat release acts to dampen the oscillating nature of the flowfield. In
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agreement with previous analysis the figure also points to the similarity in the characteristics of
the finite and infinite reaction speed cases.

A similar picture is seen in the turbulent kinetic energy profiles (figure 10a,b). They are
plotted at the same downstream location as those of the turbulent stress. Again, it is seen that the
presence of combustion, decreases the kinetic energy of the flow and that only part of this
decrease can be attributed to the decrease in the mean density; the fluctuating field is dampened
as well. It is interesting to note the change in the shape of the reacting case profile. The single
peak profile experienced by the non-reacting flow is transformed into a three peak profile. The
fact that the ppow uniform case profile experiences a singe peak profile, suggests that the
transformation is not due to the mean density or its fluctuation. Rather it is a result of the altered
velocity field and it implies, as is the case, significant differences in the field's structure. The
shift from a single to a three peak profile invites the speculation that this might be related to the
alteration of the vorticity field in the cross-stream direction from an all negative (for non-
reacting) to a positive-negative-positive (for reacting) field noted earlier. As was seen this
modifies the monotonic nature of the non-reacting flow mean velocity profile to one with a
gradient which experiences three peaks instead of one. Thus, it appears that the turbulent kinetic
energy could be related to the cross stream gradient of the mean velocity profile.

Finally, a brief assessment of the feedback of the modified flowfield on the reacting field
itself is to be attempted. Figure 11 displays two dimensional visualizations of product mass-
fraction fields. It should be remembered that under the assumptions imposed on the governing
equations these two-dimensional mass-fraction maps are equivalent to temperature maps or
inverse density maps. The comparison is between the pg,y uniform finite reaction case and the
corresponding finite and infinite reaction speed cases. The figure clearly shows that product
formation is strongly dependent on the evolution of the vortical structures which in turn are
dependent on the destabilization of the vorticity-material layer separating the two fluids at the
inlet. Because of this dependency figure 11 may also be used to deduce the earlier noted effects
of the combusting field on the flowfield. The similarities between the finite and infinite reaction
speed cases are evident here as well. This figure provides some of the reasons why the infinite
reaction speed model is able to provide such a good approximation of the finite reaction speed
simulations. It is noted that the finite reaction speed result clearly indicates features of thin
reaction zone combustion rather than of distributed reaction regions. Furthermore, it is seen that
even in the braids where the strain is highest the product concentrations are high. This implies
that quenching, i.e. the collapse of the reaction zone due to excessive strained and the associated
drop in temperature, does not take place. Both of these effects point to the fact that the
parameters chosen for the finite reaction speed simulation are such that they result in a fast
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reaction (compared to the flow). Thus, it can be concluded that the results presented herein
indicate that the infinite reaction speed model is erfective at mimicking the behavior of the finite
reaction speed case when the latter experiences a fast reaction (i.e. approaches the infinite
reaction speed limit) and not necessarily for all other cases.

Figure 12 displays the quantitative effect of the combustion modified flowfield on
product formation. This is accomplished by presenting the streamwise evolution of the product
thickness defined as

I a(x.y) dy
do(x) = = 45)

S(O.y) dy

where @ is the product density py=pY,. Hence the product thickness is representative of the
mass of prod-ict at a given channel cross-section. In each of the two parts of figure 12 the
product thickness of the reacting case is contrasted to two versions of the thickness of the
comparison, pnow uniform, case. It should be remembered that the comparison case is created by
simply decoupling the density of the flowfield from the density of the reacting field which is
allowed to vary. It should be recognized though, that using a variable density in the calculation
of the mass of product, practically eliminates the effect of the change of volume from this latter
quantity. Thus the comparison between the reacting and the pgow uniform cases does not
necessarily provide a measure of the relative difference in mass of product but rather it is more
indicative of the instantaneous relative size of the areas where product exists. For this reason the
calculation of the product thickness for the prow uniform case is repeated using the uniform inlet
density for the reacting field as well. This thickness is also shown in figure 12, Figure 12a
shows this arrangement of thicknesses for the finite reaction speed case and 12b for the infinite
reaction speed. -

The figure clearly shows that combustion exothermicity reduces product formation by
both reducing the area where product exists as well as by reducing the density over this area.
The second effect is by far the most dominant. The drop in the area where product is formed is
not as significant as that of the vorticity thickness seen earlier because the latter only accounts for
the cross-stream thickness of the layer, i.e the cross-stream size of the vortical structures but not
their streamwise size. As was sczn earlier in the flow visualizations, for the reacting cases the
cross-stream size of the eddies is i »quced substantially, but their overall size only marginally.

YL CONCLUSIONS
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A numerical scheme based on the Vortex-Transport Element Method has been presented
which is able to simulate finite as well as infinite reaction speed combustion of significant
exothermicity in a post-transitional spacial shear layer.

Numerical results indicate that the presence of combustion heat release strongly modifies
the flowfield and. in a forced layer, decreases the layer growth via an alteration of the interaction
of the vortical structures from pairing for tearing. The reduced growth in conjunction with the
reduced density within the mixing region leads to diminished mass of products formed.

Volumetric expansion resuiting from the combustion heat release is seen to accelerate the
flow in the streamwise direction. Baroclinic vorticity generation modifies the vorticity field in
such a way that positive, counterclockwise vorticity appears at the outskirts of the vortical
structures. The presence of this positive vorticity is related to overshoots an undershoots
experienced by the the time averaged velocity profiles as well as to the triple peak nature of the
Favre-averaged turbulent kinetic energy profiles. It is suggested that a more detailed
understanding of the effects of combustion exothermicity on the flowfield can be obtained via a
closer scrutiny of the mechanisms by which the combustion related density field interacts with
the flow.

The infinite reaction speed model was found to represent an effective, computationally
cost efficient approach in analyzing the effects of the combustion heat release on the flowfield as
long as the reactions to be replaced by the model are fast compared to the flow.
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Figure 2. The inlet mass-fraction profiles for (a) the finite,
and (b) the infinite speed of reaction cases.
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Figure 3. The forcing function used to destabilize the flow and to promote eddy interactions.
It represents the cross-stream distance by which the elements are displaced at the inlet
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Figure 6. Comparison between the non-reacting and reacting time averaged velocity

profiles for (a) the finite and (b) the infinite reaction speed cases. Streamwise
location x=3
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finite (middle) and infinite (bottom) reaction speed shear layers. The time is
t=10. O<x<3 part of domain displayed.
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for (a) the finite and (b) the infinite reaction speed cases.
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Figure 9. Comparison of the Favre turbulent stress profiles between the non-reacting,
reacting, and reacting with uniform density imposed on the flow but not in the
calculation of the stress. (a) is the finite and (b) the infinite reaction speed case.
Streamwise location x=2.5
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Figure 10. Comparison of the Favre turbulent kinetic energy profiles between the non-
reacting, reacting, and reacting with uniform density imposed on the flow but
not in the calculation of the stress. (a) is the finite and (b) the infinite reaction
speed case. Streamwise location x=2.5
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Figure 12. Comparison of the product thickness profiles between the reacting, reacting
with uniform density imposed only on flow and reacting with uniform density
cases for (a) finite reaction and (b) infinite reaction speeds.
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APPENDIX I

Dyvnamics of Unsteady Strained Flame

Abstract

Transient response of flame to an unsteady strain rate is analyzed using a
series of mathematical transformations. Initially, the flame is located in the
stagnation plane. Attime t=C the unsteady strain rate is applied. Two basic
patterns of the strain rate are considered: a step function, and a sinus wave. Flame
response is characterized by two parameters: (1) burning velocity and, (2) flame
location. The influence of the Lewis number and the strain rate on these two
parameters and on the relaxation time is investigated. For unity Lewis number,
within the range of compressive strains characteristic for a turbulent jet flow (200
- 500 1/sec), the shapes of the temperature and mass fraction profiles remain
almost unchanged. This leads to the burning velocity that only slightly varies
with the strain rate. In the case of non-unity Lewis number the profiles are
significantly altered even by relatively weak strain rates. This happens due to the
interaction of unbalanced heat and concentration diffusion and convection. The
changes in the profiles produce significant variation in the burning velocity. Some
analytical results are obtained for the relaxation time of flame as a function of the
strain rate and thermo-chemical parameters. The analytical derivations are based on
the application of the integral approach in the transformed domain. In order to
investigate the receptivity characteristics of flame, the periodic strain rate is
applied. In the wide range of frequencies flame demonstrates periodic response.
The average value of the bumning velocity is very close to the burning velocity of
flame under the average strain; phase shift between the burning velocity and strain
rate fluctuations is approximately constant and equal to -1.37z . This pattern is
violated only when the period of the strain rate oscillations is much lower than the
diffusion time scale. The analysis of the flame response suggests that the steady
state assumption can be used with a reasonable accuracy in a flamelet modeling,
although the phase shift should be taken into account. Extinction strain rate which
we define as the strain rate when the steady state flame location crosses the
stagnation plane for the first time, is an exponential function of the heat release.
This suggests that, in order to get adequate values of the extinction strain using a



simplified chemical kinetics mechanism, one should pay particular attention to the
chemical reactions which maintain the energetic balance of the system.

Nomenclature

k - pre-exponential factor

¢p - specific heat of mixture at constant pressure in J/kg K

A - thermal conductivity of mixture in W/ m K

p - mixture density kg/ m3

€ - strain rate of the flow in 1/s

U - velocity of the imposed stagnation point flow in m/s

u - velocity induced by the density drop at the reaction front

Yox. Yn, Y - mass fractions of oxidizer, dilutant and fuel

Cox, Cn, Cr - molar concentrations of oxidizer, dilutant and fuel in mole/ m3
T - thermodynamic temperature in K

x - physical coordinate normal to the flame front in m

Q - heat release per mole of fuel in J/ mole

W - reaction rate in mole/m3 s

R, - universal gas constant

E4/R, - activation temperature, in K

p - pressure in Pa

H - enthalpy of mixture in J/ kg

Wox, Wn, Wy - molecular weights of oxidizer, dilutant and fuel in kg/ mole
Wi - molecular weight of mixture in kg/mole

m - laminar flame eigenvalue

U - non-dimensional heat release

Z, - Zeldovich number

u, - laminar steady flame velocity

6 - non-dimensional temperature

7 - position coordinate in the transformed domain, non-dimensional

Ag, 4y, A, - thicknesses of the temperature, mass fraction and reaction rate profiles,
respectively, in the transformed domain, non-dimensional

o - subscript denoting values in the cold mixture far ahead of the flame
b - subscript denoting values in the products region far behind the flame
* - subscript denoting characteristic values

Introduction



A lot of attention in the last decade has been paid to the investigation of
tlame located in the stagnation point tlow. It was due to the relative stmplicity of
the contiguration, an opportunity 1o study flame/ flow interaction and to compare
the numerical results with the experiment. This coafiguration is Iinteresting not
only from the fundamental point of view, but also it might be usad in the
modeling of a turbulent combustion flow. The idea is to split the flame front in a
turbulent flow into a collection of small planar flamelets. Each of these flamelets
propagates into the unburned mixture with the velocity dependent on the local
parameters (effective flow strain rate etc. ). Combustion affccts the flow field
mainly through the change in density near the reaction front and through the heat
release. These characteristics depend on the amount of fuel consumed in the flame.
The effect of flow on the flame manifests itself primarily through the increase of
flame area which is characterized by a parameter called stretch (Law C. K. 1988).
This characteristic has two components: due to the strain rate and due to the flame
curvature. Study of flame in a stagnation point flow helps to understand the
influence of the strain rate on flame characteristics, while the effect of curvature is
accounted for on the global level considering the flame front as a collection of
small planar flamelets.

Previous studies ( Law C.K. 1988) demonstrated that in a unity Lewis
number mixture and in the range of strain rates typical for turbulent flows ( <
1000 1/sec.) the flame structure and buming velocity are almost unaffected by the
strain rate and conserve the values corresponding to the unstrained flame. This
leads to the suggestion that only the evolution of the flame area should be tracked
in a turbulent combustion flow while the burning rate should be kept constant
and equal to the unstrained flame burning rate (Meneveau C. et. al. 1991).

In this paper we are studying a flame in non-unity Lewis number mixture.
Interaction of the unbalanced heat and concentration fluxes with the strain rate
could have a profound effect on the burning velocity. In many cases this
characteristic of flame can not be assumed to be equal to the unstrained value. We
utilize numerical calculations to study the response of flame to the different
patterns of the strain rate. We are interested in the range of strain rates typical for a
turbulent flow and not considering rates much higher than the partial extinction
strain (Darabiha et. al. 1986) when the steady state location of flame is crossing the
stagnation plane for the first time.




Another important assumption that is usually made in turbulent combustion
flow simulations is the instantaneous response of tlame to the strain rate
fluctuations. In many papers it has been pointed out that this assumption is very
crude (Rutland 1990) and a transient model should be applied in a turbulent flow
simulation. In this paper we are investigating the receptivity of flame to the strain
rate fluctuations. The measure of receptivity is the ratio of the averaged buming
rate to the burning rate under the averaged strain. If this ratio is equal or close to
one in a realistic range of strains then the steady state assumption can be safely
used although the correction on the delay of the buming velocity fluctuations
should be made. We found that in a practically important range of strain rate
frequencies the flame demonstrates good receptivity. Thus, for engineering
purposes, the steady state assumption can be used.

In Chapter 1 steady and unsteady problems are formulated and the solution
procedures for both of them are described in detail. Solution of the steady
problem is used to initialize the unsteady problem. An approach by Zeldovich
(1985) is applied. Solution of the unsteady problem is based on the method
described by Rutland (1990). This approach is extended to include the non-unity
Lewis number case. In Chapter 2 an integral method is developed in order to
obtain the functional dependence of the flame response time on the thermo-
chemical and flow parameters. The idea of the method is to apply the regular
integral approach in the transformed domain where the governing equations have a
simple form and to use an assumption that the ratio of the heat zone thickness to
the mass fraction zone thickness is a weak function of time. In Chapter 3 a
numerical procedure used to solve the unsteady problem is described in detail. In
Chapter 4 we discuss the results of calculations obtained using a set of Lewis
numbers and typical thermo-chemical parameters . Chapter 5 contains
conclusions.

1. Formulation

In this paper a plane flame is located in the stagnation point flow produced
by two colliding jets of reactants and products ( Figure 1). X-axis is directed




perpendicular to the flame. y-axis - along the flame. We assume that the
externally imposed stagnation pownt tlow is inviscid and irrotational. The
distribution of the x-velocity component in this flow is given by the following
equation

Ux)=- &) x : (1)
In this expression € is the diagonal component of the strain rate tensor.
v |4
products
0
3
streamlines §  reactants
H

Figurel Flame located in the stagnation point flow

Also, we assume that the strain rate £ is a function of time.

Initialization

Initial temperature and deficient mass fraction profiles are obtained by
solving the problem of steady propagating premixed flame. The flame propagation
is governed by the following set of equations:

Continuity:
L(pu)=0 2)
Enthalpy:
di - d (AdH ' 3
pudx dx(dex)+Qw(Y'm 3)

Deficient mass fraction:

S—




- d CCWY M {
pu%—ﬂ(pD%)-H, W(Y. H) Ey
Equation of state:

p=pR,TW,, (5)
In this problem one-step chemical kinetics mechanism is assumed. Our numencal
simulations using full-scale chemical kinetics mechanism demonstrate that the
bulk details of the flame/ flow interactions can be described using a simple
chemistry mechanism.
Reaction rate:

W =k Cox Crexp(-EJRT) (6)
In this paper we assume that fuel is deficient. The concentration of the oxidizer is
almost constant and equal to the initial concentration:

Cux=Cox

Using the relationship between the mass fraction of fuel and its concentration, we
can rewrite reaction rate expression as follows:

W= &»%" p Y;exp(-EJRT) (7
f

Boundary conditions for these equations are:
=-0 H=H, x=+o H=H, dH/dx=0 _,

x=-00 Y=Y %, x=+00 Y=0 (8)
Since two second order ODE have five boundary conditions, one of the parameters
of the problem, namely mass flux per unit area p u can not be specified
independently and is becoming an eigenvalue.

First, the continuity equation is solved. The result of integration is:
p (x) u(x) = p, uy = const

It means that the mass flux per unit area is constant along the axis perpendicular to
the flame front in a steady propagating flame. Introduction of the following new
variables (Zeldovich et. al. 1985) reduces the order of the system:

_ H-Hy - 2 iy

0= HoH, 2~ 1};[ Q (Hy-Ho) (Wg:)_ ] e )
- 7

m=poin| 7 Wl | (10)

Here 6 is reduced temperature, y is non-dimensional heat flux. m is non-
dimensional mass flux, an eigenvalue. Subscript * denotes characteristic values of
the parameters. We have used

Ao = Ao, Cpo=Cpo=const Woes L%a Po Y;° exp(-EJRT)
f




Enthalpy equation wntten in terms of the new vanables takes the form:

,\di-m_\'*a(i):() ol

d
Here 8 18 detined as:

@8 =Wl Wi, = }'if if” Y exp( Zo (6-1)/(1+1(6-1)))

P

and Z, = k—?—— (T,-Ts) is Zeldovich number, u = L.-T, 5 non-dimensional heat
_an b L]
release, Y,=7Y/Y; °is non-dimensional mass fraction of the fuel. Another

equation can be obtained by multiplying original enthalpy equation by W, onginal
mass fraction equation - by @, adding them together and integrating the resulting
equation. This operation results in equation

pu(Wy(H-Hy)+Q 1= %Wf%wDQ% (12)
p

which can be transformed into

m(0-1+Y)=y+ 2d¥ [ = _4 (13)

L., dé pc,D

Here L, is Lewis number. Boundarl conditions are _
@6=0y=0 Y=1; @8=1y=0 Y=0 (14)

Equations for reduced temperature (11) and mass fraction (13) are solved
numerically using damped Newton algorithm and a shooting procedure. Runge-
Kutta integration starts from the hot side of the flame. The initial values of the
derivatives at this point are obtained by approximating the functions y and Y using
the first terms in the corresponding Taylor expansions:

y=k1 (1-9) Y= kz(l-('))
and substituting these expressions into the governing equations to find the values

of kK and k,.:
'gl(0=l)=-kl= .’EL{.[I. l+__4_.
dé 2 Y m?:L, ‘

fg 0=1)=-k=-(k) +mk)

The Runge-Kutta integration proceeds up to the point where non-dimensional
reaction rate function ¢ (6) is equal to zero (reduced ignition temperature). At this
point the numerical value of the heat flux y is compared with the analytical
solution of equation (11) fory where ¢ (6) is put to zero and a correction to the
eigenvalue m is made. The integration continues up to the point where the
analytical and numerical solutions match. The equation for the mass fraction is
satisfied automatically (Zeldovich et. al. 1985). Once the solutions for y (6) and




Yt6) are obtained. the temperature protile in the real domain 15 recaleulated using
the definition ot the non-dimensional heat flux v:

= VANKCoexp-EJRT,) ¢, p) f (uO/(1-w+1)d6/x () (15)

Solution of the unsteady problem

The reduced temperature and mass fraction profiles obtained from the
solution of the steady problem are used as initial profiles for the solution of the
unsteady provlem. Transient dynamics of one-dimensional tlame is governed by
the following set of unsteady equations:

Continuity
9P, Ipw) _ 16
ot * dx (16
Mass Fraction
aY ¥ _ 4d Y\ u
a =L wy, Ty w, 17
Par TP s a(pDax) .1y ()
Enthalpy
oT aT _ 0
pc‘,,-a—+puc,,a ax( ™ ) Q W(Y,T) (18)

Also, the same equation of state (5) and reaction rate expression (7) are used.

Boundary conditions:

@x=-0Y=Y,, T=T),, @x=+0 Y=0,T=T, , (19)
Subscript O denotes the values of the mass fraction and enthalpy in the cold
mixture.

In this paper we adopted an approach of C. Rutland (1990). Stagnation point
flow U(x) is externally imposed on the flame. Due to combustion, a drop in
density occurs in the flame zone. This density change induces a velocity
component u'(x). This velocity perturbation vanishes far away from the flame
zone and is non-zero in its vicinity. The x-component of the total velocity can be
approximated as

u(x) = U(x) + u'(x).
Also, the following boundary layer approximations can be made :




dJ di . d.
e DD e
Jgr av | dzo
The density drop in the flame occurs mainly along the x-axis. Hence
s >> v, ow
Here v' and w’ are perturbations of the velocity tield in y and z directions,
respectively. Using these assumptions, we can rewrite equations (16), (17) and (18)

as follows:

dp \9(P) | 9pu) _ 20
TV T T (<0)
Py pewy =9 poei)-W(y,nw, Q1)
ot ox Ox ox
pc,a—T—+pc,,(U+u') al:i(,l‘zl +Q WY, T (22)
ot dx Odx ox

These equations are simplified and translated into a system of reaction-
diffusion equations using two transformations. The main ideas behind the
transformations are described in detail by Rutland (1990) for the premixed flames
and by A.Ghoniem and M. Soteriou (1992) for the diffusion flames.

First, the unsteady equations are non-dimensionalized. In the following
subscript 's' denotes some characteristic scale value, bar on the top of a variable
means that the variable is non-dimensional. The non-dimensional governing
equations are:

Qé+£Ll.‘_L(7(x) @+ E&L@:O

d_ X ox % ox
9§+ u, (U+it) %%-;—}%%(pu %%) SWE DW,
PACIES SE Tt A A
The first transformation (¢, x) --> (¢, i)
t=t, $=|exp (f () adr )]f (23)

translates the ron-dimensional equations into a domain moving the applied strain
rate:

B, 4t pgj) 9@W) - g
Xs ax

~

ot



21 +u ol oy 2L ()Y Lo lpy i(P D — oY Wy, W,
ot X gy G P dx dx ! pY, '
—)I+ll 17 B([)_[_gz_’___B.__I_)._Q_(A_aT) _l’_. Q l‘ () T)
ot GCox X p.p dx\Gox] pp cT.

The part of the convective term related to the imposed velocity Uyx) is eliminated
inthe (s, ¥) domain. The next (Howarth) transformation
is used to eliminate the part of the convective term which contains velocity u’ .

To apply the Howarth transformation, we integrate continuity equation with
respect to X from - oo to x and take into account that on the products side, far
away from the flame u’ (- ) =0.

The result of the integration is

f P 47+ %-B(E) (pu) =0. (24)
Second ( Howarth) transformation (;, x)-> (;, n) is defined as:
n= f Ed.?, t=t 25

Application of the second transformation and equation (24) translates mass fraction
and temperature equations as follows:

aY_,, la( b ). & wi T

=Lp - W, DW, 26
o (G 3 ppD an)” oY, ¥, ) W; (26)
aT _ 1+ B'® i(i _ar) 6 Q2 w. 27
a; xll p' an Cp p an p C’ ) ( n ( )

We can make further simplification, assuming that A(x) p(x) = const
Now we can rewrite equations (26-27) as:

oT _ Qo = A '

at a, ()_( PC,T (Y T) % P (28)
¥ _ ( L 9Y a

@ =bg )_ D). LWy, DW,, L. = (29)
PV B LAm) anl pY. ( d D

The convective terms are absent in the ( t, n ) domain.
Chemical time scale is used as the time scale of the problem and heat diffusion
length scale is utilized as the length scale of the problem :

=C, WYPT) x=Vootw=Vaul/le|, Co=po¥f1W;
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Initial mass fraction of fuel ¥’” scales mass fraction; the difference between the
flame and ‘cold’ temperatures scales temperature 7, =7, - T, . Then equations
(28) and (29) are rewntten in terms of the following reduced variables:
y= Y T-g=T:To
Y, T, -T,
and have the form

i€=xasz(,>i(i€)+eaw, Ka = toun |€ | (30)
ot onlan! P wq,1)

oY =Ka32(:)i’—(—l—9’1)- po W(.6) (31)
ot on Le(m) an/ P wq, 1)

Here we introduced Karlovitz number to measure the strain rate and used energy
conservation equation Wy (H,-Ho)=Q Y/ which can be derived from equation
(12). Boundary cgnditions are:

@n=0 Y=0,0=1; @n=+ Y=1,0=0 (32)
Expression for the non-dimensional reaction rate is:

Po W0 _ ¥ oxp(Z.(6-1)/(1+u(6-1 33

P W exp(Z,.(6-1)/(1+u(6-1))) (33)

Parameters Z, and u have been introduced earlier for the steady propagating
flame problem.

2. An integral solution in the transformed domain

Before solving numerically equations (30), (31) we will analyze them using
an integral approach and several assumptions. The purpose of this analysis is to
find the thickness of the preheat zone as a function of time. This result gives us
the characteristic time scale of the flame response as a function of Lewis number
L., Zeldovich number Z, , Karlovitz number K, and heat release parameter u.

We assume that the reduced temperature 8 and normalized mass fraction Y
profiles in the transformed domain can be approximated as:

=1-3N,1{N Yop= 31 _1[(1
am=t-54" 2(49)3’ nsde Y= 57 2(4,‘3’ nsdy o G9
&m =0, n>4 Y= 1, n>4y
The profiles are plotted in Figure 2. We are considering the case when L.> 1 and
the thickness of the reduced temperature profile in the transformed domain 4y is

11



v,
(3
*
larger than that of the mass fraction protile. The analysis for the case of L, < [ is ’
similar. » ’
A 2
E ’
>
’
Ay(0) Ag(t) n
Figure 2. Reduced termperature and mass fraction profiles as functions
of transformed coordinate 7, L, > 1
)
We assume that reaction rate expression (33) can be approximated as
L WEO _ vz, (61)) (35)
P wa,1)
since the heat release parameter 4 is of the order of 0.8 and the reaction rate has . °

maximum close to the point @ = 1. Integrating equations (30) and (31), we obtain:

3 4 - KB(t)f Kl ae) n+[ p WO 40 s
ot , am\d P w1 .

0

o 4 - KB F} f pWEO 40 3
o L., Bn J w(, 1)
0

Integration of the reaction term yields

+ o0 R A'
PWEO . _ Ym WT. 0 2259 4n=| TepZL1)dn =
b P w1 b P W(,1) 0

2404 . lz Aya+3 4 (38)
3ar 22 exp (- 0 ( 2Ae))
Integration of the unsteady and diffusion terms in equations (36), (37) is
straightforward:

12



- o0 - x

96 i = 3 dds N yn = . 3dy (39)
ot 8 dt ot 8 dt
¥}
’”a'ae) _ 3 '“8(87 3
O 9%% n = —| 5=|dn =-
£ an(an 4 2 Ag fo an\ an 1 2 Ay

Combining all terms together, we get two expressions from equations (36), (37):

2
3dde 3 BSR4 py fZos L2, & (40)
8 Y
2
%djj— %KZB;? +40 fZp 28, %9) : @1)
e Y

Here we denote
Ag A 245 1 37 4 3 4y
Zes L3 -_6'9—r' = —’_Q (l'ex - Ze “_‘) 1+ -—))).
f(Ze,tt Ay Ao) 34y 22 pCy A ( 249))
Equations (41) and (40) are ordinary differential equations. In order to solve them
analytically we are making an assumption that A/ Ay = const . Actually, the ratio

of two thicknesses is a weak function of time. Now we can rewrite equation (40)
as follows:

2
fifllte: BK. B + 1244 f (42)

The solution of this equation with initial condition ¢ = 0, Ag (0) = 4, is
A§(1) = Ase Kal + (A7 - As) e A4 (43)
Here

8K
As= — 222 A, =163 .
T 2K.- 163 As=1671

Now, using transformation (25), temperature distribution 6(n) (34) and equation
of state (5), we can obtain an expression for the thickness of the reduced
temperature profile in the real domain 53(:) as a function of time

a0 40
8= f eKatdn/p(n) = I eXad 1w lin = eXatdg (143 50) (44a)
For the mass fraction profile thickness we have

ay
Oy = f eKadn/p(n) ) = Age K< {z + % (z -32Y4 +24/8)), 2= Ayl Ag (44b)

Now we can use an approximation

13



% . =yl (45)
Oy
and assume that temperature and mass fraction profiles in the transformed domatn

are not very much different from each other, i.e.

:=Ay/ dg=1+¢ |d<<]. (46)
Here we implicitly assumed that Lewis number is close to unity. Now we can
substitute expression (46) into equation (44b) and, retaining the first terms in the
Taylor expansion series, obtain:

Oy = Age K&

u
1 +§-m +E).
Substitution of this expression and equation (44a) into equation (45) yields:
4 I
A—:=l+%(L,-l)(l+%m-). 47)
Here we also used Taylor expansion for Lewis number, assuming that it is close to
unity.
In a similar way the ratio of the reaction zone thickness to the preheat zone
thickness in the transformed domain, 4,/ 4¢, can be evaluated. Denoting the
reaction zone thickness as §, we obtain:

Ay
S, =j e'Ka‘dn/E(n))=Age'Kaf{z +%(z -32%/4 + 29/ 8)}, z =A/ Ag << 1

Here z can be used as small parameter. Taking this into account, we obtain:
= Age Kd z 1+{"—u:,z=d,/Ag << 1. (44¢)

In this equation only linear in z terms were retained. On the other hand,
reaction and preheat zone are related by the following equation (Law C.K. 1988):

&K (49)
59 Z‘
Using together equations (44a), (44¢) and (49), we obtain
3u
+ —
1-

AL=_AL>Z£=W)§‘_ (50)
4 1+ _ﬁ_ ¢ ¢

l-u

Taking into account equation (43), we rewrite equation (44a) as follows
83 =eXKaipg (1+l ) = e-2Ka!( Ase Ka' + (A2 - As) e A4) (1+1——) or

2
82 =(As+(A,° -As)e'(ZK“'A“-)') g

14




In this equation the time scale of the thickness vanatien is located in the
exponential term and ts equal to

r="2K,- s - 2K, 1-% 2K, - %ﬁ—l;tl-e.rp(-jize—‘l—’:(1+-;lﬁ,)
i - Ay £; i V' -Jdg .

Using equations (47) and (50) to substitute for 4,/ 44 and A9/ 4y , we obtain the
time scale of the flame thickness variation

Sk, 32 (14 Lon 1y (135 ) deexp 2 3 /!
T -[ZKa- 527 (12 (Le-D (1 g7 d-exp( Zug(u))(l+2ug(,u)))j (51)

The right-hand side of this equation consists of two terms: Karlovitz number and a
combination of Lewis number, Zeldovich number and heat release parameter. It is
easy to demonstrate that for typical chemical and thermal parameters the second
term is usually smaller than the first. This suggests :
(1) Lewis number has minor influence on the flame thickness relaxation time
(2) Relaxation time is inversely proportional to the applied strain rate
(Karlovitz number).
This conclusions of the integral approach will be checked by the numerical
solution.

3 . Numerical Procedure.

Equations (30), (31) with boundary conditions (32) are solved numerically
using Crank-Nicholson integration scheme. The source term is linearized in order
of to make the scheme implicit.

In the following discussion, the upper index denotes the time level, the
lower index is the grid point number in (;, 1) domain. The computational grid is
uniform. Discretization of equation (30) according to the Crank-Nicholson scheme
can be written as follows:

O - Lirus™ + RHS!), (52)
T
Atis the time step, RHS is the notation for the right-hand-side of equation (30)
RHS! =K,B (¢t _)_a_( Q).’” (&).( W .9 ) (53)
onl\ank Ph\wa,1 )
15



The equation is written for n-th time .¢evel and i-th grid point. We introduce the
following notation for the non-dimensional reaction rate:
Q= P W e

: (54)
Powi,
and use an approximation of this term on the (n+l) tume level:
Q7 =2 Q" + (ddD] dr= Q" + ([dYdO)] dO= Q" + (dYd0) (6,"'-6") (55)

Substituting equations (53) - (55) into equation (52), we obtain a finite difference
approximation of equation (30):

n+l n+l n+l
A 1 BZ(:M»‘”’—("") + Q"+ A0 (676 +
At 9 an,- 2ot (56)
2,,my 9 | 9V M ..
K;B“(t ) aﬂ) + £}

Finite-difference approximation of mass fractlon equation (31) can be obtained in a
similar manner.

Grid in the computational domain (;, n) remains uniform. Every time step
the thickness of flame is compared with the distance from the flame to the
upstream and downstream boundaries of the computational domain. If either of
these distances is smaller than two flame thicknesses, the computational domain is
regridded by doubling the An. This procedure is similar to that used by Rutland
(1990). Physical coordinate x; corresponding to the computational coordinate 7); is
moving with time according to equations (23) and (25). Each time step a new
location of x; is recalculated in such a way that the origin of the stagnation point
flow, x; =0 , remains motionless. For the second derivative of 6 in the
computational domain the following formula is used:

J ?ﬁ)ﬂ = 63 -2*6" + 6. (57)
an\an ). (anf
We use equation (57) to rewrite equation (56) in the form suitable for the
application of Thomas tri-diagonal matrix inversion algorithm :

A”nlol 9':101 +Aml 9»1 +A.l»l eml " (58)
Expressions for the coefficients A..l LAM, ALY and C' are:
AN =AS =- 1 _K,B¢™)
2AAn}
A= L1 _K,B*(t™")+ J- L(dﬂ/déi) (59)

(anf

=LK, B )| 29 + & 4 - L(dae): 6
C ZKB(t)éﬁ(an)i+Ar+Q 2(-0/9)
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In this formulation we use boundary conditions (32), corresponding to the one-
flame configuration. The derivative (J€2/d6). is evaluated analyucally using
equation ¢ 33).

4. Results and discussion

Set of parameters
In the numerical simulation we used a set of parameters typical for one-step
methane/ air combustion:

Activation temperature T, 2.0e+04 K
Pre-exponential factor & 5.0e+08

Heat release parameter 0.83

Initial temperature Ty 300 K (60)
Mixture density po 1.11 kgim3

Mixture specific heat c, 1.12e+03 Jikg K
Mixture thermal conductivity A 0.04 Wim K

Mixture Lewis numbers Le 09,1,1.1

These parameters were used also in the solution of the steady problem.

Response of flame to a stepwise variation of the strain rate

An important information about the flame transient characteristics is
obtained considering the response of flame to the stepwise variation in the strain
rate. Initial profiles of temperature and concentration are provided by the code
which simulates steady propagating premixed flame. It is described in detail in the
previous chapters. Strain rate € (¢) is changing at time ¢ =0 from zero to some
constant value. The response of flame is characterized by two parameters: (1)
burning velocity :

Ss(8) = #] W Wiy dx (61)
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and. (2) integral flame location :

% -Ef Wt de /[ W dx (62)

Several remarks can be made about the buming velocity (61). In one
dimensional tube flow this integral is equal to the consumption and propagation
velocity of the premixed flame. In the stagnation point configuration the
interpretation of this integral is less clear. If we assume that after some time flame
has stabilized near some location x;, then we can write mass conservation
equation as follows

Su(x) A(x) = S5 (€) A(x[E)) (63)
In this equation A(x) is the area between two chosen streamlines at position x
where the density is equal to the initial density pg, 'ss ' denotes steady state value
of integral (58), S.(x) is consumption velocity with respect to the unbumed
gases. Equation (63) can be rewritten as

Su(x) = Sp 55 (€) AXAE)) A(x) > Sb, 55 (€) (64)
for compressive strains. In the case of 2D plane stagnation point flow streamlines
are given by equation

y(x) = C(y) x (65)
The area A(x) is reduced to 2*y(x) and equation (64) can be written as
Su(x) = Sp,s5 () x/ x£€) (v6)

Thus, in the stagnation point configuration S, is not only a function of the strain
rate € but also of location x. In the hydrodynamic calculations the thickness of the
preheat zone of flame is of the order of 5 mm, which is on the verge of resolution
of a regular numerical scheme. In this case the flame front virtually collapses in
one infinitely thin surface. To calculate the evolution of this surface one should
find: (1) how much of the mixture is consumed per unit area and, (2) how ‘the area
of this surface is changing with time. In the following we are trying to address the
first question.

Response of flame to the step strain rate have been obtained for parameters
(60) and Lewis numbers Le = 0.9, 1.0, 1.1. In Figures 3a and 3b strained flame
burning velocity S, and flame location x; are plotted as functions of dimensional
time for different values of stepwise strain rate and unity Lewis number. The range
of strain rates is from 700 to 1600 1/sec. When the strain rate is increasing, steady
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Figure 3 Burning velocity and flame location as functions of time, Le=1
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state flame location 1> approaching stagnation plane and. at some vajue of strain,
crosses it. This value is another characteristic of tlame. Rather loosely, we will
call this value of the strain rate the “extinction strain”. Actually, the real
extinction doesn't happen at this strain. but the negative burning velocities which
occur atter the crossing of the stagnation plane are of little interest for us here since
they are absent in a typical turbulent flow. For unity Lewis number, when the
flame crosses the stagnation plane, burning velocity is lower than the unstrained
value only by 8 %. This happens when the strain rate is equal to 1,100 1/sec.
Strains higher than 1,100 1/sec cause the flame to move further into the products
side until it reaches the location -0.2 mm (see Figure 3b) . An additional increase
in the strain rate makes the profiles steeper while the flame itself starts to move
backward.

In Figures 4 and S the same data is plotted for Le = /./ and Le = 0.9,
respectively. Now the flame response is substantially different. When Le is lower
than unity ( see Figure 5), steady state burning velocity is actually higher than the
corresponding unstrained value although the flame itself is still moving into the
stagnation plane. The extinction strain for Le < / case is 1,400 1/sec., i.e. 21 %
higher than the value of the Le=/ case. The flame is "stronger” and more
resistant to external disturbances. From the profile point of view this is explained
by the particular structure of the preheat zone in the Le < [ case. The flow is
modifying the preheat zone in such a way that the maximum of the reaction rate W
increases while the thickness of the W profile decreases only slightly. The
situation is reversed in all aspects when Le = ./ ( see Figure 4 ). Now the
extinction strain is approximately 900 1/sec. Bumning velocity decreases due to
the drop in the maximum of the reaction rate W.

In a realistic turbulent jet the values of the instantaneous strain rates rarely
exceed several hundreds 1/sec. Thus, for example, for very high strain rate of 700
1/sec. steady state burning velocity in a Le = / mixture will change by - 2.4 %, in
Le =0.9 mixture it will increase by +15%, and, finally, in Le=1./ mixture it will
drop by 18% from the respective unstrained flame values.

We can conclude that even for low values of strain in the case of non-unity
Lewis number burning velocity is significantly modified due to the convection/
preferential diffusion interaction. It is not safe to assume that the strained flame
burning velocity is approximately equal to the unstrained value, as it was in the
case of Le = /. In a flamelet model, burning velocity has to be considered as a
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tunction of Le and ¢. In the next part of this chapter we will tny to answer the
question of whether this function should depend on time.

The receptivity of tlame can be characterized by a relaxation time. This ume
can be introduced in several difterent ways but, of course, the functional
dependence of it on the thermal and chemical parameters shouldn't be intluenced
by the way of introduction. Rutland (1990) interpolated buming velocity S, as the
following function of time:

Se=Co+Crexp(-t/ T) (67)
and used the time scale 7 as a characteristic of flame response. Figure 3 (Le =/ )
demonstrates that this type of interpolation produces good result only when the
strain rate is higher than the partial extinction strain rate, i.e. £ > 1100 s-!. These
high values of strain rate were mostly used in the Rutland's paper. For lower
values of strain ( see Figure 3) flame demonstrates fluctuating response pattern
typical for almost critically damped system. In this case we characterize the flame
response by the settling time, i.e. the time where the amplitude of the bumning
velocity fluctuations around the steady state value is becoming less than 0.5 % of
the steady state value.

In Figure 6 the settling time is plotted as a function of strain rate in log-log
coordinates for several values of the Lewis number. The purpose here is compare
the results of numerical simulations with analytical expression (51) for the
relaxation time as a function of strain rate ( or Karlovitz number &k, ), Lewis
number L., and other parameters obtained from the integral analysis performed in
the transformed domain (7, ). It is clear from the Figure that unity Lewis number
( Figure 6b) is a special case as far as the relaxation time is concerned. Close to the
partial extinction the restructuring of the preheat zone is taken place and the slope
of Ts9 = Tos%(€) curve increases almost two times: from -2.4 before the
extinction strain to -0.8 after. The latter value is close to -0.724 reported by
Rutland et.al. (1990). In his case I he used mainly the strain rate values higher than
the partial extinction value. Hence, only one slope has been reported.

Equation (51) contains Zeldovich number Z, in the denominator. The
typical value of this number is 8. The second term in the sum on the right-hand
side of (51) is small compared to the used Karlovitz numbers . This manifests
itself in the weak dependence of the relaxation time 7 on the Lewis number. The
conclusion is supported by the data of Figures 6 (a), (c) and (d). In these Figures
the relaxation time is plotted as.a function of strain rate forLe = 1.2, 0.9, 0.8.
The slopes of the curves are almost identical, although the curves themselves are
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slightly shitting to the right when Lewis number is dropping. A remark should be
made here that the relaxation time mentioned in this chapter is the time related to
the burning velocity variation while in Chapter II the time scale of the tlame
thickness variation has been calculated. These time scales do not exactly
correspond to each other since not only the reaction zone thickness is changing
under the strain, but also the maximum of the reaction rate is usually varying.

Response of flame to the periodic strain rate

Other aspects of the flame transient behavior can be investigated studying
flame response to the periodic strain rate. In the previous chapter we obtained that
if the strain rate is changing in a stepwise manner it takes some time for the flame
to adjust to the new strain. The higher is the strain the lower is the relaxation time.
For our set of parameters the relaxation time was of the order of 102 sec. (see
Figure 3). As far as the period of the strain rate fluctuations is concerned, one
could guess that in a turbulent flow the smallest period (the highest frequency) of
velocity fluctuation is associated with the diffusion time scale. Flow structures
with higher frequencies will dissipate due to the diffusion. The diffusion time
scale is also critical for the flame phenomena since it characterizes the process of
"feeding” the flame. We used a set of the periods of strain oscillations proportional
to the diffusion time scale. In the code periodic strain

EM)=Enw+Eampsin(W(1t-1t)) (68)
is applied after the burning velocity reaches its steady state. In this expression &,
is the average value of strain, €., is the amplitude value of the oscillations, ¢, is
the time it takes to reach the steady state. For the set of parameters (60) we choose
the average strain &, to be equal to 700 s-!, amplitude of strain oscillations -
0.5*¢,, and frequency corresponding to the periods of 5, 2, 1 and 0.3 diffusion
times. In Figure 7 bumning velocity of flame is depicted as a function of time for
this set of parameters. In Figure 7a the period of strain oscillations is 0.3 diffusion
time. The diffusion time scale is approximately 10~ sec. Thus the period of
oscillations is only slightly higher than the chemical time scale 10° sec. Flame
initially demonstrates periodic response which later becomes irregular. The
amplitude of fluctuations is very low since flame relaxation time 102 sec. is much
higher than the period of oscillations 0.3* 10° sec. and when the flame starts to

25




A = Kouanbaly =07 ‘g0 Suonejpiaso jo apmijdwe ‘a1er urens spouad o3 asuodsar swelq £ anSiy

) ¥
[ ] [ ]
SIS UMY HOISTYJIP () ¢ ST SUONR|[1ISO  JO poud | (p)
[s] aung,
o St 100 s000 0
T T — T T T v — Al T T — T L] Ld T ]
]
N VA SR G SRS WU VR W WD S N T S S
SHEOS AU HOISHIP ()7 SY SUONRBI[1ISO  JO potiag ()
{s}ouny
00 stoo 00 SO0'0 0
Ag T — T Al T T — T T LA — T T T T B
]
4

-

NS SUwE

100

S1100

100

ST100

€100

Se100

100

1100

SLI0

00

sTioo

€100

SE00

rioo

[s/w] Andoaa Funung

[s/w] Ansofaa Sunumg

00

a[eas Sum uolsnyyp ' S SUOHIE|[19SO JO potiag (q)

MR B LA S A

[sjouny
$100 100 S000 0
AN S S e LANED RNNLENED B St B Saies S B B

NSNS BT T AW

g
=]

[ T T Y PO AN YIS S U T S S T S
3[£9S WN UOISNJJIP 3 JO £'Q SI SUOUIRIIOSO JO POLII] (¥)
{s]auny
$100 100 5000 0
[ L 1 L) T — T 1 T ~ 1 L) L] T q L T L) T R
L B
I -4
g 1
X ]
[ oo o

1100

stioo

(4111

sTI00

€100

SE100

yi0c

1100

S0

tioo

sTioo

€100

SE100

¥100

[srw] Adofaa Sunung

{sqw) Aroofaa Surumg

26




respond to the flow fluctuation the fluctuation already has changed direction. From
Figure bt T =117, vto Figure 7¢ ¢ T = 2 1, 1 the amplitude of the buming
velocity oscillanions is increasing and the oscillations themselves are becoming
more and more periodic and regular. Fluctuations of the strain rate with the period
T = 5t induce buming velocity oscillations with the extremum values
corresponding to the extremum values of the strain rate. For our set of parameters
the average strain is 700 1/sec. and the amplitude is 0.5. It means that the
extremum values of the strain rate are 1050 and 350 1/sec. The steady state
burning velocity, corresponding. for example. to the strain rate 1050 1/sec. is
approximately equal to 0.0118 m/s (see Figure 3). The minimum of the burning
velocity fluctuations in Figure 7d is also equal to this value. It means that now
flame has enough time to respond fully to the strain rate variations. For the peak
strain rate of 1050 1/sec. flame relaxation time is 0.002 sec. (see Figure 3) which is
now comparable with the period of oscillations 5*t,; = 5 * 10~ sec. For the lower
frequencies flame demonstrates fairly good receptivity to the strain rate
oscillations. The phase shift between the burning velocity and strain rate
fluctuations is constant and close to - 1.3 7.

Another way to characterize the receptivity of a flamelet is to average the
instantaneous burning velocity over the significant amount of time 7 until it does
not change any more, and to compare it with the steady state value corresponding
to the average strain &,,, i.e.

T

R(0.€4,Eamp) = %f S (¢, &1)) dt / S, s(€av) (69)
Iss

If the burning velocity oscillations have the average value equal to the

corresponding steady state value, then the ratio R is equal to one. In Figure 8 R is

plotted as a function of frequency for €.y, = 0.5 &, . The value of R is very close

to 1.02 for a wide range of frequencies.
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Figure 8. Flame response to periodic strain rate. Ratio of averaged burning velocity
to the burning velocity at the averaged strain rate, Le=1, amplitude = 0.5

It demonstrates that if one is interested in the average burning velocity over a
time period, he can replace the averaging of the instantaneous burning velocity by
the averaging of the strain rate and using the buming velocity at this average strain.
The regular, periodic pattern of the flame response to the sinusoidal strain rate
oscillations demonstrates that the flame relaxation time is a function of the
magnitude of change of the strain rate, but not of the direction of this change,
i.e. flame behavior doesn't show significant hysteresis.

Influence of Heat Release on the Extinction Strain

In this paper a simple one-step chemistry mechanism is used. In reality
many chemical reactions are taken place at the same time and the important
question is to establish which chemical reactions should be taken into account, or
where equilibrium or steady-state assumptions can be used. A step in this direction
is to determine how chemical (pre-exponential constant, activation energy),
thermo-chemical (heat release), transport (Lewis number) and flow (strain rate)
parameters influence flame transient characteristics. The influence of Lewis
number and strain rate was described in the previous chapters. In this chapter we
are considering the effect of the heat release on the extinction strain.
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Figure 9 Extinction strain and unstrained burning velocity as functions of heat release parameter,
Le = 1; interpolation of the extinction strain :

E.x(1) = 3.8704¢-025 * exp(76.18* ) ; interpolation of the unstrained burning velocity :

Sp(p) = 2.973e-015 * exp(37.877* )

Extinction strain is by our definition the strain when the steady state flame
location crosses the stagnation plane for the first time. For a given value of the
heat release parameter u ( 4= (T, - T,)/ Tp ), the value of the extinction strain
was determined numerically by trial and error approach, keeping all other
parameters (60) the same. The results of these calculations are depicted in Figure
9. In this figure we also plotted the unstrained flame bumning velocity. Both
functions are strongly dependent on the heat release and are very well interpolated
by exponential functions. While the exponential dependence of the unstrained
flame burning velocity on the heat release is clear from, say, equation (15), the
exponential growth of the extinction strain is somewhat a less expected result.

In a regular flame, thickness of the reaction zone is about ten times smaller
then the thickness of the preheat zone. The flow "feels” the flame only through the
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heat release which takes place in the reaction zone and through the accompanied
temperature rise and density drop. The obtained exponenual dependence of the
extinction strain on the heat release demonstrates that while simplifving chemical
kinetics mechanism special attention should be paid to the chemical reactions
which determine the energetic balance of the system. For example, for
hydrocarbons this means that one shouldn't expect reliable dimensional results
from the flame model unless he will take into account energetically important CO
oxidation reactions.

5. Conclusions

A series of mathematical transformations was used to simplify the equations
governing one-dimensional unsteady flame/stagnation point flow interaction.
Influence of flow and thermodynamical parameters on the transient response of
flame was studied. It was found that:

(1) even for a low value of strain in the case of non-unity Lewis number
burning velocity is significantly modified by the convection/ preferential
diffusion interaction. Strained flame buming velocity is not even approximately
equal to the unstrained value, which was the case when Le = /.

(2) under the periodic strain, in the range of frequencies and amplitudes,
corresponding to the typical turbulence flow, the ratio of the averaged
instantaneous burning velocity to the buming velocity under the averaged strain is
close to one. It proves that in this range of frequencies the flame possess a high
degree of receptivity to the strain rate fluctuations. The phase shift between the
strain rate and burning velocity fluctuations was approximately -1.3 7. To
evaluate the instantaneous value of the burning velocity, steady state assurmnption
can be used if the characteristic time of the strain rate change is greater or equal to
the relaxation time of flame when it is affected by constant strain rate with the
amplitude equal to the strain rate variation (see Figure 6d). The correction should
be made on the phase shift. Flame relaxation time depends mainly on the
magnitude of the strain rate change, but not on the direction of this change.

(3) the fact that the extinction strain is an exponential function of the heat
release parameter dictates the simplifications of the chemical kinetics mechanism
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in such a way, that the most important reactions from the energetic point of view
should be preserved.

(4) For non-unity Lewis number 0.5 % settling itme 1s inversely proportional
to the applied strain rate tor all range of Lewis numbers. The graph of unity Lewis
number settling time plotted versus strain rate has pre- and post-extinctional
branches with the slopes of -2.4 and -0.8 in log-log coordinates. In this sense, in
terms of the relaxation time, unity Lewis number comprises a special case .
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ABSTRACT. The linear instability of a family of inviscid, two-dimensional. variable-density shear
layers and wakes is investigated. Vorticity profiles corresponding to a monotonically increasing
velocity profile are first examined. A larger family of initial vorticity distributions which model
the merger of two unequal vorticity layers of opposite sign is then considered. The latter s obtained
by superimposing on the foriner a wake coinponent, characterized by a spread, &, and a velocity
deficit. V. The initial density distribution resembles a temperature spike and is described by a
thickness, 0. and a tempevature ratio, T,. The stability propertics of the layers are interpreted in
terms of a four-dimensional parameter space (W', §, T,. 7). The non-linear evolution of the flow fieid
is illustrated using the transport element method.

Flowfield stability exhibits strong sensitivity to the details of the density distribution. fu the
absence of the wake component, the stability properties of the heated layer are dlivided into thuee
categories according to the thickness of the density profile,o, and the vorticity thickness. &,,. For
@ >> 6, instability of the Kelvin-Helmholtz mode in a uniform-density low is recovered. When
o ~ by, the shear layer mode is inhibited; while this trend persists for # < &y, the layer becomes
characterized by the appearance of additional short-wavelength unstable modes which become
dominant as o decreases and Tr increases. Addition of a wake component is shown to alter this
behavior, and to oppose the stabilizing effects of heat release. In this case. the shear layer mode
always dominates the wake mode, and the presence of heated sublaver has a wcak eflect on the
instability of the vorticity layer when & is large, but may influence the phase speed of unstable
waves whenever the zones of high vorticity and high density gradient coincide.

1. Introduction

The evolution of high Reynolds number chemically-reacting free shear flows is gov-
erned by a large nuinber of fundaniental processes. These processcs can be described
in terins of the dynamic effects of combustion. which leads to the establishment of
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an expansion flowfield and zoues of sharp density variation, and in terius of intrinsic
instabilities of the underlying shear flow which shape the evolution of the vortic-
ity field. In most cases of practical interest, these effects are closely coupled, as the
vorticity-induced convective field governs the molecular mixing processes and heuce
modulates local reaction rates, while the evolution of the chenical reaction affects
the vorticity field through flow divergence field and baroclinic vorticity.

The description of such flows is complicated, due to nonlinear flow-combustion
mteractions and due to the large number of parameters which govern the relevant
mwolecular and chemical processes. This complexity often necessitates the construc-
tion of sunplified fundamental models which facilitate the isolation of particular
interaction modes, and reduce in the number of governing parameters.

Linear stability theory has proven to be an important tool iu theoretical studies
of reacting and heterogeneous shear flows [1-12]. In most of these studies, heat re-
lease mechanisins associated with the mixing of initially separated reacting species
are modelled by corresponding temperature and density profiles which are imposed
on an otherwise homogeneous shear flow. Thus, while dynamic effects associated
with the presence of an expansion field and the details of the chemical reaction pro-
cess are omitted, spatial density (and temperature) variation resulting from heat
release mechanisms is retained. Using this approach, the essential stability proper-
ties of the flowfield have been predicted. In particular, linear stability studies have
shown that the presence of two or more zones of different deusity significantly af-
fects the developiment of the flow. For instance, it has long been observed that a
non-unity density ratio alters the growth of shear flows and influences the entramn-
ment induced by the vortical structures embedded theremn [1-4], even when gravity
cffects are weak {53-6]. In chemically-reacting shear layers. the effects of density vari-
ation are equally pronounced; stability results indicate that flowfield stabilization
or destabilization may occur, depending on the details of the density and vorticity
distributions [7-9]. Furthermore, linear stability results show that the presence of
zoties of large density variation may also affect the nature of flow instabilities (e.g.,
by altering the bounaries separating absolute and convective instability modes),
and may result in reshaping the global feature< of the flow [10-12].

Unfortunately, the application of linear stability results to predict the belhiavior
or reacting flows has been complicated due to the large sensitivity of the results
to the initial vorticity and density profiles. In this work, this issue is tackled by
analyzing the stability of heterogeneous flows for a wide range of initial conditions.
Initial density (and temperature) profiles are assumed which model the development
of nonpremixed combustion. In addition, initial vorticity profiles corresponding to
symimetric and asymmetric shear layers and wakes are considered. A large number
of initial conditions is thus constructed, and flowfield stability is examined in a

four-dimensional parameter space which models a large family of reacting layers

and wakes.

The stability problem is based on linearization of the inviscid heterogeneous
flow equations. The formulation of this fluid flow problem is described in Section 2,
and computed results are discussed in Section 3. Trends in the behavior of the fow-
fields arc established and further examined by performing non-linear simulation of
selected cases using the transport element method (e.g. [13- 14]). Major conclusions
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are given in Section 4.

2. Formulation
2.1. THE STABILITY PROBLEM

In a right-handed coordinate system (r.y). the initial Row field is given in terws
of the steady flow velocity, {'(y). and the imposed density profile. g(y). The flow 1s
assumed two-dimensional and inviscid. and both the perfect gas and the low Mach
number approximations of the governing equations are employed [13-16]. The nean
density profile is assunied to be the result of heat deposition by the reaction. while
diffusion effects are neglected. Under these assumptions, the fluid flow is governed
by the momentum and continuity equations. respectively written as:

Du

QE-‘VP (1)
Do _ .
50 = (2)
V-u=0 (3)

where u = (u, v) is the velocity. t is time, ¥ = (3/8x, 8/0y) is the gradient operator,
D/Dt is the material derivative, and p is pressure. The governing equations may
be recast in vorticity form by replacing Eqs. (1) and (3) by

Du ©p
TR Vp (4)

where w 1s the vorticity. This foriulation will be later used in the simulation of the
noulinear evolution of the flow.

The stability properties of the variable-density shear flow are studied by de-
termuning the temporal behavior of small amplitude disturbances imposed on the
iiial sieady flow. These properties are anaiyzed in terms of the disturbance cross-
stream velocity component vy which is first written in the form:

vo(y.t) = v(y)exp (ia(r ~ ct)) (5)

wherea is the normalized wavenumber, taken to be real. and ¢ = ¢, + ic, is the
complex wave speed. The cross-stream component v{y) obeys the modified Rayleigh
equation:

o % oU \
v 8 ey 6
v 5! +(L’—c+g(lf—-c)+a)v (6)

with boundary conditions, v{y — +oc) ~ exp(—oay) and v(y — —x) ~ exp{ay).
In Eq. (6) and the following, primed quantities indicate differentiation with respect
toy.

We are interested in determining whether waves of the form expressed by Eq.
(5) are unstable, i.e. whether their growth rate ac, > 0. To this end, the eigenvalue
problem is solved using a shooting technique, in which Eq. (6) is integrated fromn one
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side of the laye r to the other using a fourth-order Runge-kutta predictor-corrector
scheme [17]. We keep iterating n the complex eigenvalue space ¢ using a secant
algorithm until the absolute change in ¢ is reduced below 10~ This procedure
yields dispersion relations which relate the growth rate ac, and the phase speed ¢,
to the disturbance wavenumber a.

2.2 INITIAL CONDITIONS

The forimlation stability of the stability problem is completed by specifying
the steady, parallel shear Aow velocity and deusity profiles. A faniily of shear layers
and density profiles is constructed to model the physical processes shown schemat
ically in Fig. 1. We cousider chemically-reacting lavers foriued by merging oxidizer
and fuel streams downstreain of a thin splitter plate or a bluff body. Inunediately
following the tip of the plate, the velocity distribution may be modelled as the
superposition of two Blasius profiles, starting from a vanishing streamwise velocity
and increasing to the free stream velocities {1 and "2 (Fig 1b) Further down-
stream. the velocity profile approaches that of a shear layer. in which the velocity
increases monotonically from one side of the splitter plate to the other (Fig la).
In the third flow configuration. the incoming streams are separated by a bluff body
(Fig. 1c) In this case. the velocity field 1s regarded as the superposition of two
shear layers. each resembling that shown in Fig. la. In all cases, the heat deposited
by the initial development of the chemical reaction 15 modelled by a spike in the
temperature profile

In order to model the various flow configuartions anticipated w Fig. 1. we start
with the expe nentalty fitted velocity profile for large distances downstream of the
splitter plate, _ '

Cly) = 22 ann (L) (M

2 '
where (7, is the mean flow velocity and &, is the local vorticity thickness. The
local vorticity thickness is chosen as characteristic length scale. aid the velodity 1s
normalized such that the reduced expression.

U(y, = aniily) (3)

replaces i’ (7). As suggested by Koch [18]. a continuous fanuly of velocity profiles.
which approximates all of the distributions shown in Fig. 1. can be obtained by
modifying Eq. (9) by letting:

I'(y) = (1 + W)tanh(y — &) — 1 tanh(y + 6) (9) -

wheee 1V is the wake-deficit, and & as the displaceient of the vorticity layer. In Eq.

(10). W and & are restricted such that 1 < 0. and & > 0. When 1V = 0. Eq. (8) 15|

recovered for 8 = 0. and increasing the value of & > 0 results in a pure trauslation
of the fank profile. On the other hand, when 1V < 0. near wake velocity profiles
are approximated for large . and the double Blasius profile is inutated when 6é is
small.

The free stream density and temiperature are chosen as a reference density and
temperature scales. Accordingly, the normalized initial density proftle is taken as
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a=1] W=u02 W =014 W =038 W=12
d=21 W =010299 | W =0.24709 | W = 055080 | I =0 %6uu.2
e=3 [ W =0u9261 | IV =022988 [ W =05352204 | W =us2119

TABLFE 1

a Gaussian profile with standard variation o, and is expressed i terins of the
temperature ratio T, as follows:

T’T: Fexp (T4 (10)

In most shear flow applications, including shear layers. the vorticiry thickness 1s
usually larger than the product thickness, so that ¢ < 1. Houwever. we Jo not
enforce this restriction in order to account for fluid flows characterized by high
mass diffusivities. or bluff body flows. When & ~ o, the flowfield approximates the
merger of two layers of unequal density, a flow configuration that has already been
analyzed (see. e.g. [13.19]).

The temporal stability of the family of variable-density layers described above 1s
investigated in the four-dimensional paraineter space (W, 6, T, ) Ve cousider four
values of the temperature ratio, T, = 1,2.4, and B.0, i.e. we start with a uniform-
density field and then vary the temperature ratio in a range that is represeutative
of most cly niically-reacting flows. For each of these cases, the effects of the wake
component deficir and thickness are investigated by varying W and é in such a way
as to approximate all the flow configurations shown in Fig. 1. In order to separate
the effects of the strength of the wake component, W', from those associated with its
thickness, &, we alter the values of IV and § simultaneously so that velocity profiles
having having the same maxima and ninima are obtained for all values of 6. In
addition to the tanh profile having W = § = 0. we consider 12 (I1¥. d) corubinations
which are described in Table I. The corresponding velocity profiles are plotted in
Fig. 2 for all thirteen cases, the shear layer profile being included with the set of
profiles having 6 = 1.

Thus. W varies in a wide range of wake deficits. while increasing # from 1 to 3
represents a migration from an asymmetric shear layer velocity distribution to an
asymimetric wake profile, in which vorticity layers are well scparated The stabihty
properties of variable-density layers are first determined assunnng cqual density
and vorucity thicknesses. @ = 1. The effect of the thickness of the density profile 1s
then iuvestigated Ly repeating the analysis at 7, = 4.0 for four additionalo values.
s=13507505. and 0.25

oly) =1-

2.3. BRIEF THEORETICAL REVIEW

The linear stability problem of inviscid incompressible parallel shear low has
heen studied extensively (r.g [10.20-21]). In this section. we summarize aspects of
the theory which directly affect our search for unstable eigeufunctions. We first note
that the classical stability results expressed by Rayleigh s theorem [20-21].
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A necessary condition for instability is that the profile {'(y) admits an inflection
point

and by Fjortoft s extension,

A nece.sary condition for instability is that ["’({" — [",} < 0 somewhere the
flow. where U, is the velocity at the inflection point

have to be modified when considering a variable density flow. It may easiliy be
shown that the appropriate generalizations of the above results inay be respec-
tively expressed as:

A necessary condition for instability is that U” + (p'/p)U’ admits a sign change
and

A necessary condition for instability is that U + (p'/p)U"(U' - ;) < 0 some-
where in the flow.

Thus, in a variable-density field, the behavior of the quantity "' +(p'/p)l"’ replaces
that of U’ in the determination of the stability of flow. As indicated in Refs. 1 and
8, this leads us to expect strong interactions between the density variation and the
shear flow, whenever zones of high vorticity and density gradient coexist.

The behavior of the curves of U/” + (p’/p)U’ for the Aow configurations of Table
1 is plotted in Fig. 3 for § = 1,6 = 1, and T, = 1,2, 4, and 8, and in Fig. 4
for 6§ = 1,T, = 4.0 and ¢ = 1.5,0.75,0.5, and 0.25. By the preceding, we are
led to expect unstable modes whenever the curves intersect the zero axis. In the
uniforin-density case, a single intersection point is observed for the tanh profile,
and two for the asynumetric layers. This is not surprising, since we expect to be
observe one unstable shear layer mode, and one unstable wake mode. However,
for large T, several intersection points appear for the tank profile, and may yield
additional instability modes. This unexpected result is further investigated in the
following section where the behavior of these modes, wlhose appearance depends on
the vorticity-density configuration, is computed.

We conclude this section by extending to variable-density flow the analysis of
Drazin and Howard [22] who studied the the long wave hehavior of unstable modes,
i.e. the limiting behavior of unstable cigenvalues as @ — 0 Our analysis is reduced
to a form similar to the incompressible case by rew-iting the modified Rayleigh

equation as:

(Z2F') = a?Z%F (11)
where

Z'.’._ 7 _ M2 - i 12

= (L c).F._U_C (12)

and ¢ is the perturbation potential. Noting that Eq. (12) is identical to Eq (1.6)
of Drazin and Howard [22], we are able to carry out a similar analysis to the one

L )
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performed there. (Details vill be presented elsewhere). In the limit a — 0, Eq (14)
implies that Z?F” is constant and that this constant is zero in order to sat isfy the
boundary conditions. Hence F is constant in intervals where Z does not vanish, but
may have jumps when Z = 0. Assuming F has no jumps, a similar argument to
that presented in [22] shows that the linuting eigenvalues satisfy:

2L +22,=0 {13)

For equal free stream densities, Eq. (14) yields the unstable eigenvalue ¢ = i which
is recognized as the limiting eigenvalue of the shear layer mode. Density variation
does not seem to affect the asymptotic behavior of these long waves.

A simular result is reached if £ admits jumps. While the details of the algebraic
manipulatious are more involved than in the uniform-density case, we are still able
to show that if F has a jump at yo. then [{yy) = 0. Thus. velocity maxima and
minima are expected to represent limiting values of unstable eigenfunctions. For
W < 0, the profiles considered in this study admit a velocity minimum, which is
recognized as the limiting eigenvalue of the (unstable) wake mode.

The long wave approximation estimates are used in the following section to
initialize the search for unstable eigenfunctions and to characterize the additional
inflection points which appear for the tanh profile at high temperature ratio {Fig.
3). Should these additional inflection points correspond to unstable modes. then the
above argument shows that the associated instability mode affects shorter wave-
length instability. since the asymptotic behavior of long waves is solely dependent
on the details of the velocity profile.

3. Results
3.1. STABILITY OF VARIABLE-DENSITY LAYERS AND WAKES

Stability analysis of the variable-density paralle] asymmetric shear flow is first con-
ducted for the velocity profiles of Table I, and density profiles having ¢ = }, and
T, =1 2.4, and 8. Since a sharp estimate of an upper bound on unstable wavenum-
bers was not sought. a complete search for the unstable eigenfunctions over a
hounded waveruniber-cigenvalue region canuot be easily conducted. Instead. the
search for unstable waves is initiated by concentrating on the behavior of long
waves, and extrapolating the asymptotic behavior of unstable shear layer and wake
modes, as determined by the theoretical predictions. To this end. the wavenum-
ber is mcreased incrementally with small step size Aa = 0.01, until the iterations
stop to converge. In all cases, the modifiedd Rayleigh equation is integrated over a
mesh of 4000 grid points, equally distributed over the interval — 1 - 6 < y < 4+ 6.
Thus, the expected short wave behavior of the additional instability modes is only
determined in cases where their instability band extends that of the othier modes.

Figures 3-8 show the growth rate and phase speed of unstable niodes. computed
for T, = 1.2.4. and 8, respectively. For brevity, results obtained for the intermediate
value & = 2 are not illustrated. In all cases, the thickness of the heated layer
coincides with that of the voiticity iaver, ¢ = 1. We start with the uniform-density
flow (Fig. 5). which is later used as reference to quantify the effects induced by the
density variation. Cold flow calculations are sumimarized as follows:
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{1) The growth rate of the shear layer mode increases with increasing wake
deficit. This result is expected since higher wake deficits correspoud to higher
vorticity values.
(2) The highest increase is achieved for the sinallest separation distance, § =
1. This is not surprising and is due to the construction of the family of velocity
profiles and the selection of (1V', 8) pairs so that the same velocity extrema are
obtaiued for different separation distances. Hence. smaller & values correspond
to higher vorticity concentrations.
(3) The wavenumber of the most unstable shear layer mode exhibits a small
increase with increasing wake deficits at § = 1, but is alinost dependent
of W at higher separation distances. Thus, the wake deficit does not affect
the frequency selection of uustable shear layer mode, which is closely approx-
imated by estimates based on the tanh profile.
(4) While the growth rate of the most amplified wake mode increases by
increasing ¥, its wavenumber of is almost independent of H'. The growth
rate maxima for both the shear layer and wake modes are reached for o = 0.6.
{3) The phase speed of most unstable mode vanishes for the tanh hyperbolic
velocity profile but increases in the direction of wake deficit with increasing
Ww.
{6) The maximum growth rate of wake mode increases by increasing the sepa-
ration between the positive and negative vorticity layers. However, in all cases
considered, the shear layer mode always dominates the wake mode. This result
ts best interpreted by focusing on the positive and negative vorticity layers
separately, which may be used to distinguish between the symmetric shear
layer and asymumetric wake-like profiles. For the latter. the negative vorticity
layer. whose inflection point is associated with the unstable shear layer mode,
has considerably higher strength and thus dominates wake component
The impact of heat release on flowfield stability is examined in Figs. 6-8, which
show dispersion relations for T, = 2,4, and 8. The analysis is divided into two sec-
tions; results for the symmetric tanh profile are discussed first, and then contrasted
with corresponding results for the asymmetric layer and wake profiles. As before,
dispersion relations for the symmetric {ank profile are lumped with those of the
asyminetric shear layer mode with § = 1, and identified by a wake deficit W = 0.
Examination of the dispersion relations reveals:
(1) By increasing T,, stabilization of the Kelvin-Helmholtz mode is gradu-
ally achieved. As noted by McMurtry et al. [9]. who studied the stability of
a heated layer idealized by broken-line vorticity and density profiles, heat re-
lease inhibits the growth of the most unstable mode, whose amplification rate
decteases to a small fraction of the uniform-density maximum as temperature
ratio becomes high. The resuits also indicate that the wavenumbers of the
most amplified mode and neutrally stable modes decrease as T, increases.
Thus, the density variation alters the features of the instability in such a way
as to stabilize short wavelength disturbances and collapse the instability to a
thin band affecting long wave perturbations. On the other hand, the vanishing
phase speed property of shear layer mode persists.
(2) The stability properties of the layer are significantly altered for T, > 4.
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As predicted in the previous section. the computed resuits show that the flow
field now admits three unstable modes. The additional pair of unstable modes
are associated with the outer zeros of (r’')’ and are thus called outer modes
(8]. Dispersicon relations of these modes appear as extensions of that of the
Kelvin-Helmholtz mode.

(3) The outer modes have identical growth rates and equal but opposite
phase speeds. The phase speeds of the neutrally stable solutions coincide
with the flow velocity at the outer inflection points. Meanwhile, at high T,
the outer mode dominates the shear layer mode which is almost stabilized
by the density variation. The wavenumber of the most amplified cuter modes
increases with increasing teinperature ratio; thus. the associated mechanism
promotes short-wavelength instability.

The stability properties of asymmetric shear layers and wake profiles differ sig-
nificantly from those of the symumnetric tanh profile, as the heat release has a less
significant impact than in the former case. The stability results for these profiles are
divided into two groups, according to the separation distance between the layers of
opposite vorticity. For a large separation distance (8 = 3), the amplification curves
for the shear layer mode are weakly affected by the presence of a heated region
within the vorticity layer. In particular, all of the stability properties of the unsta-
ble modes are unaffected. as neither the instability bandwidth nor the wave speed
of unstable modes are affected by the temperature ratio. This result is expected,
since the density is constant and equal to unity except in the region separating the
distinct vorticity layers. In this region, the velocity profile is almost constant, so
that (p’) is closely approximated by the vorticity derivative {*” in the entire flow.
Thus, the vorticity maxima do not lie with regions of high density gradient, and
results for uniforin-density flow are recovered.

For small separation distances, the presence of a heated fluid layer results in
appreciable changes in the stability of the flow, and has a different influence on the
behavior of the wake and shear layer modes. By increasing the temperature ratio,
instability of the wake mode is promoted. as the corresponding amplification curves
admit higher maxima. While the phase speeds of the unstable wake modes is weakly
affected, the corresponding instability bandwidth is increased, and the wavenumber
of the most unstable wake mode favors shorter waveleagth instability. This result
should be favorably contrasted with the results of Koochesfahani and Frieler who
showed that the spatially-developing wake mode may become dominant when the
asymmetric vorticity layer is subjected to a severe monotonic density difierence [1].
However, in all cases considered in our study, the highest amplification rate of the
shear layer mode is always considerably higher than for the corrsaponding wake
mode. Therefore. the effect of heat release is not expected to lead to a qualitative
change in the behavior of the perturbed reacting layer. which remains dominated
by the growth of unstable shear layer waves.

Shear layer modes exhibit a different response to the imposed density variation.
This response resemnbles the behavior of shear layer niodes in heterogenecus layers
for which the density increases monotonically from one side of the layer to the other.
In both instances, density variation has minimal influence on either the growth rate
of unstable Kelvin-Helmholtz modes, or on their stability bandwidth. However, it
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significantly affects the phase velocity of the waves. In the heterogencous shear
layer [19]. unstable shear layer modes acquire an additional convective velocity
component of the same direction as the high density stream. The analogy between
the two cases can be established by inspecting the behavior of the density field in the
neighborhood of the inflection point of the velocity profile. Here, the "unstable shear
layer mode” is associated with the “upper™ inflection point of the velocity profile.
The density profile has positive derivative in the neighborhood of this inflection
point, so that the density increases as we move towards the top free stream. Thus,
we are led to expect an increase in the phase velocity of unstable shear layer mode,
since the top strean velocity is positive. This expectation is reflected 1 the stability
calculations, which show that the phase velocity of the most unstable shear layer
mode increases with iucreasing temperature ratios and becomes positive for small
wake deficits.

3.2. EFFECT OF DENSITY PROFILE THICKNESS

The stability results of the previous section are reexamined for different thick-
nesses of the density profile. For laminar nonpremixed flames, the thickness of the
low-density zone depends on both the thermal and mass diffusivities. Thus, accurate
estimates of this thickness relative to the vorticity thickness require the solution
of the boundary layer equations for reacting flow, and the results will depend on
the Prandt] and Lewis numbers, and on the details of the chemical reaction. In
general, the product zone will be embedded within the vorticity layer, since ncatr
unity Prandtl and Lewis numbers generally prevail, and initial conditions describe
a finite thickness vorticity layer and a sharp interface separating the oxidizer and
fuel streams.

In this study, however, such a detailed study is replaced by the simplified ap-
proach of considering different values for the density thickness, which are selected
in a wide parameter range in order to cover most situations of interest. To this
end, the stability of all the velocity profiles of Table I is investigated for a variable
density field specified by a fixed temperature ratio T, = 4, which is characteristic
of a large number of combustion applications. Meanwhile, the density thickness is
gradually varied; the values ¢ = 1.5,0.75,0.5, and 0.25 are considered. The results
of the computations are shown in Figs. 9-12, in terms of the growth rate and phase
speed of unstable modes. As before, results for the symmetric tanh velocity profile
are lumped with those of shear layer modes having é§ = 1.

The discussion of the results distinguishes between the stability properties of
the shear layer and wake modes, and those obtained for the symmetric fanh profile.
The latter case is discussed first and is summarized as follows. The behavior of the
tanh shear layer mode is non-monotonic with respect to variation of the density
thickness. The results are best interpreted by first considering the limiting case of
very large density thickness. For this density configuration, the vorticity ficld lies
in a zone of almost constant density, so that the uniform-density results are recov-
ered. As o is decreased and becomes close to the vorticity thickness, stabilization
of the shear layer mode is observed. The maximum growth rate, the most ampli-
fied wavenumber and the stability bandwidth are all reduced. On the other hand,
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the nature of the instability is not altered, as all unstable modes have zero phase
velocity. As o is further decreased, stabilization of the shear layer mode contin-
ues but the flow field acquires an additional pair of unstable modes. Due to the
symmetry of the density and velocity profile, these additional "outer modes” have
identical instability bandwidths and amplification curves, with equal magnitude
but opposite-sign phase velocities. In the range of density thickncsses considered,
the instability of the additional modes is promoted by decreasing ¢. as the corre-
sponding most-amplified modes admit higher growth rates and wavenumbers. This
is accompanied by an increase in the stability bandwidth and the phase velocity
magnitude. Thus, tanh shear layers which accommodate high heat release slow re-
actions are more susceptible to such short wavelength instabilities. However, we do
uot expect this mechanism to persist continuously as o is further decreased. since
in the limit ¢ | 0 the deposited energy vanishes so that results for uniform-density
flow should be approached.

The effect of the density density thickness is greatly attenuated in the presence
of a wake deficit. In all cases, weak variations of the stability properties of the flow
are recorded as the value o is altered. The response of the wake mode to changes in
the density thickness o is extremely weak, as the results exhibit alinost insignificant
changes in the stability bandwidth, amplification curves, and phase relationships.
These changes are of little importance since the shear laver mode dominates the
initial evolution of the flow. The latter is weakly affected by changes in the density
thickness, which result in small modulation of the phase speed of unstable modes.
As previously mentioned, this result is expected, based on the similarity between
the behavior of the vorticity and density profiles around the unstable inflection
point and that described in monotonic variable-density shear layers [19].

3.3. VISUALIZATION OF UNSTABLE EIGENFUNCTIONS

Finally, the evolution of asymmetric shear layers is numerically computed At-
tention is focused on the late stages of flowfield evolution, which witness the for-
mation of vortical structures due to the non-linear breaking of unstable waves. The
results are used to examine the validity of extending the trends established in the
linear stability analysis. This exercise is limited to a visualization of the eflect of
these structures on the deformation of the flow and the evolution of the vorticity.
A detailed investigation of the dynamics of the flow is not attempted in this work,
as detailed reacting flow computations will be discussed in a subsequent study.

Numerical simulation of the variable-density flowfield is performed using the
two-dimensional transport element method. The numerical scheme, which belongs
to an adaptive class of Lagrangian field methods, is based on the discretization
of the vorticity and density gradient fields into a number of transport elements of
finite overlapping circular cores. Accordingly, the velocity field is given by a discrete,
desingularized convolution over the induced vorticity field of the transport element.
A similar convolution yields the density field. Once the velocity ficld is computed at
the element centers, a second-order predictor corrector integration scheme is used
to track their motion and to advance the numerical solution. Discrete vorticity
and density values evolve according to Eqs. (4) and (2), respectively. Meanwhile,
discrete density gradients are updated by relating their evolution to the material




TR| o W 8 | NR | Core size | Wavenumber | Wavelength | Growth rate
1 - 0 1] 11 0.72 0.45 139 0.19
1 - 1.2 1 17 0.70 0.57 11 0.40
1 - 8215 | 2 25 0.70 0.45 13.9 035
4 1 0 0 17 0.35 0.4] 133 0.06
4 1 1.2 1 23 0.35 0.66 9.52 0.42
4 1 8215 { 3 33 0.35 0.47 134 0.37
4 0.5 0 0 33 0.175 0.7 3.98 0.13
4 Q.5 1.2 1 45 0.175 0.68 9.24 .44
4 1.5 1.2 11 25 0.35 0.59 10.65 0.37

TABLE I

deformation of the Lagrangian niesh. Details of the formulation and construction
of this numerical scheme, which has been extensively employed in the simulation of
variable-density and reacting flows, can be found elsewhere [13-14.19]. Thus, only
a brief account of the computational paraineters used in th. calculations is given.

The visualization of unstable modes is performed using the temporal model of
the vorticity layers. In this model, the velocity and density fields are spatially peri-
odic in the streamwise direction. The periodicity length, A, is close to the wavelength
of the most unstable mode, as determined above. The region of finite vorticity and
density gradient is initially discretized on a square mesh, having N /2 and V5 grid
points in the cross-stream and streamwise directions. respectively. The core size of
the transport elements, &, and the discrete values of vorticity and density gradient
are found by minimizing the error between the numerical and initial fields [13}.

Nine cases of differenitally-heated layers and wakes are numerically investigated.
The layers are identified by values of the temperature ratio, the thickness of the
density layer, the wake deficit and the displacement of the wake profile, which are
listed in Table II alongside the wavenumber, wavelength, and growth rate of the
corresponding most unstable mode. Table II also shows the number of computa-
tional grids in the cross-stream direction, N R, and the core radius of the transport
elemenus. In all calculations, the time step At = 0.02.

The first three cases correspond to uniform-density flow, and are selected in
order to examine the effects of the wake deficit and the displacement of the wake
profile. The munerical experiments are repeated by keeping the same (initial) vor-
ticity field parameters and altering the initial density field by letting T, = 4, and
6 = 1. Thus, for these initial flow configurations (cases 4-6), the initial vorticity
and density thicknesses coincide. Finally, the dependency of the evolution of the
flow field on the thickness of the initial density profile is exanuned in cases 7-9.
These cases correspond to vorticity field configurations for which the linear stabil-
ity analysis predicts a strong (case 7) or weak (cases 8 and 9) response to changes
in 6.

The computations are initialized by introducing a perturbation in the flow field
using sinewaves having the same periodicity wavelength as the computational do-
main, A. and amplitude 0.01). The perturbation is applied by displacing the location
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of the transport elements in the cross-stream direction according to the sinewaves.
The calculations are extended in order to observe the linear amplification of the
unstable modes. and the early non-linear stages of their evolution. For cases 1, 4.
and 7, this objective is achieved by carrying out the computations until t = 12. In
the remaining cases. calculations are stopped at t = 9. Results of the simulation of
the flowfield starting {rom the flow configurations of cases 1-9 are shown in Figs.
13-21, respectively. The figures are generated by plotting the location and instan-
taneous position and velocity vector of the transport elements The development of
the vorticity fi~ld thus illustrated is discussed below.

Figure 13 shows that the evolution uniforin-density shear layer iuitially de-
scribed by the symmetric tanhk velocity profile does not destroy the symmetry of
the vorticity field. The vanishing phase speed of the instability wave, predicted by
the linear theory for the linear Kelvin-Helmholtz wave, persists as the waves un-
dergo a non-linear growth regime, and roll to form a coucentrated core of vorticity
Detailed computations of similar flow fields have been performed previously [13}.
and have shown that, when pairing is disabled. the late stages are characterized by
a maturation of the vortex cores and the continuous entrainment of the vorticity
from the braids into the cores.

The superposition of wake deficit on the symmetric, monotonic layer profile
results in a significant departure from the previously discussed behavior. The evo-
lution of the asymmetric layers of Figs. 14 and 15 1s characterized by the finite wave
speed of the linear instability modes, and by the convective motion of the vortical
structures which form following their nonlinear evolution. As previously discussed,
the direction of motion of the linear instability waves can be determined from the
the linear stability analysis and by inspection of the initial velocity profile. The
computations are in agreement with the results of the linear theory. which predicts
aliost equal phase speeds for the st unstabie modes. and a slightly larger growth
rate for the layer with the smaller separation distance. Alternatively, this behavior
can be yualitatively predicted by considering the contribution of the "weaker™ vor-
ticity layer. whose induced flow field leads to the motion of the linear waves and of
the vortices.

The consideration of the effects of opposite regions of vorticity is easier for the
larger displacement parameter (§ = 3, Fig. 15). since the corresponding vortic-
ity profiles are formed of well-separated strips of opposite sign of vorticity. The
computed results indicate that the evolution of the flowfield is dominated by the
stronger (negative) vorticity layer. The latter appears to develop independently of
the weaker vorticity layer, which does not exhibit significant deformation during the
period of the simulation. This assessment no longer holds in the case é§ = 1, which
shows that both regions of vorticity deform simultaneously (Fig. 14). This results
in a greater deformation of the vorticity field and the formation of a substantially
larger vortex core.

The impact of the density variation on the development of the flow is illustrated
in Figs. 16-18, which show the evolution of shear layers characterized by the same
initial vorticity distributions previously considered, and a density profile having
T. = 4, and ¢ = 1. When starting with the symmetric tanh velocity profile. the
growth of Kelvin-Helmholtz waves is significantly suppressed. Moreover, the non-
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linear wavebreaking of these modes results in the formation of weak vortex cores
which are less coherent than in the uniforny-flow case (Fig. 16). These results are in
agreement with the predictions of the linear stability theory and with the compu-
tations of McMurtry et al. [9] who considered the evolution of syn:unetric reacting
shear layers.

Density variation effects are considerably less pronounced w the presence of a
wake component. For large separation distance, & = 3. comparison of the uniform-
and variable-density results (Figs. 15 and 18, respectively) shows that the presence
of a heated layer has almost no influence on the development of the flow. These
results extend those of the linear stability theory. which predicts hittle changes
in the wavelcugth, growth rate, and phase speed of the most unstable Kelvin-
Heliholtz waves with the variation of the density profile for this initial vorticity
configuration. On the other hand, the interactions of the density and vorticity field
cannot be neglected for small separation distance. § = 1. As indicated tn Table 11
the wavelength of the most-unstable mode is decreased as the temperature ratio is
increased to T, = 4. Moreover, while the growth rate of this mode is not significantly
altered by the presence of the heated layer. its phase speed is noticeably reduced.
This observation also holds when considering the convective motion of the vortices
which form following the nonlinear evolution of the unstable waves (Figs. 14 and
17). However, in botl cases, the vorticity-density interactions do not suppress linear
growth and do not inhibit the formation of large coherent vortex cores
The sensitivity of the flow-field to the details of the initial density profile is examined
in Figs. 10-21. In particular, the stabilization of the symmetric layer by heat release
and the weak dependence of the asymmetric layer on the presence of the heated layer
is investigated. As previously mentioned, when the regions of high vorticity and
density gradient are well separated, the initial development flow is approximated
by the uniform-density equations, so that layers characterized by a large separation
distance will not be further considered. For the symmetric case, Fig. 19 indicates
that by decreasing the thickuess of the density profile to ¢ = 0.5, the behavior of
the shear layer undergoes an additional transition. The resuits reflect the prediction
of the stability theory. which indicates that in this regime the most unstable miode
cousists of a pair of travelling waves of equal growth rates, and equal but opposite
phase speeds. These waves amplify as they move away from the middle of the
computational domain. The rollup of the waves occurs as the two trains of periodic
waves meet at the boundaries of the computational domain, and is followed by the
formation of vortices whose cores are smaller and less coherent than their uniform-

density counterparts. This mechanism differs significantly from the rollup of the

linear Kelvin-Helmholtz waves in uniform-density flow, which, as indicated by the
theory. have appreciably larger growth rates. Thus, the stabilizing effects of heat

release are expected to persist for this profile. though the details of the density

distribution may lead to radical changes in the development of the flow and in the
structure of the associated vorticity field.

On the other hand, the addition of a wake deficit greatly diminishes the "stabilizing”
impact of the density variation. As predicted by the linear theory and observed
in the computations, the early evolution of the asymumetric layer having a large
wake deficit is alinost inscnsitive to the presence of the heated layer. For such
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initial vorticity configurations. the effects of density variation are limited to a small
modulation of the wavelength, growth rate, and phase speed of the most unstahle
mode. Moreover, as illustrated in Figs. 14. 17, 20 and 21, simlar vortical structures
are obtained as a result of the nou-linear wavebreaking of the unstable modes. This
observation holds for all the asymmetric layers considered. despite the fact that the
details of the vorticity distribution within the vortex cores and 1n the braids joining
neighboring vortices and the convective miotion of the eddies are strongly affected
by baroclinic vorticity generation in the later stages of evolution of the flow [13.19].

4. Couclusions

In this work, stability of heterogeneous shear flows is investigated using linear stabil-
ity analysis and numerical simulations. A large number of initial flow configurations
which model the development of nonpreniixed reacting shear flow are analyzed The
initial conditions are used to examine the effects of heat release associated with the
development of a nonpremixed flame on the stability of asymmetric shear layers
and wakes. The latter belong to a continuous family of velocity profiles which is
constructed by deforming the symmetric tanh shear layer profile using a wake com-
ponent characterized by characterized by a spread. & and a velocity deficit. W'
Density variation is used to model the effects of heat release. The initial density
distribution corresponds to a temperature spike and is described by a thickness, o,
and a temperature ratio, T, Stability curves are obtained in this four-dimensional
parameter space and numerically visualized using the transport elemeat method.
The numerical simulations are extended into the nonlinear stages of flowfield evo-
lution in order to examine the validity of extrapolating the linear stability results
Stability of the tanh reacting shear layer exhibits strong sensitivity to the details
of the density distribution. When the density and vorticity thicknesses are close.
stabilization of the shear layer occurs as the temperature ratio increases. This effect
is manifested by a sharp decrease in the instability growth rate. the noulinear evo-
lution of unstable eigenfunctions yields weaker less-colicrent vortex structures than
those observed in uniform-density flow. By decreasing the thickness of the density
profile, additional inflection points and instabuility niodes are observed. These insta-
bility modes dominate the shear layer mode which is almost stabilized by the heat
telease. However. while the associated growth rates increase with decreasing density
thickness and appear to approach the maximuin growth-rate values obtained for
uniform-density flow. the nonlinear evolution of these instability modes does not
result in the formation of concentrated vortices or in substantial deformation of the
flow. Thus, for the tank profile, heat release tends to stalnlize of the flow.
Addition of a wake deficit significantly alters the stability of the flow. In the
parameter range considered, two flow configurations are distinguished. When the
zones of high density gradients and vorticity magnitude are well separated. heat
release and deusity variation have almost no impact on flowfield stability. In this
case, the growth rate and phase speed of unstable waves are weakly affected, and
their non-linear evolution results in the formation of large concentrated asymmetric
vortices. On the other hand, when regions of high vorticity and density gradients
are close or coincide, heat release has a weak effect on the development of the flow.
While the growth rates of unstable waves are almost unaflected, their phase speeds
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depend on the details of the density variation. This mechanism 1s also observed in
the later stages of evolution of the flow, which indicate that the convective motion
of the large vortices is modulated in the same manner as the pliase velocity of the
corresponding linear waves Thus. heat release 1s not expected to inhibit the growth
of unstable modes in asymmetric layers and wakes, but may how.ver influence the
global features of the flow.

The correspondence between computed stability results and initial flow config-
urations indicates that the eflects of heat release may be intuitively predicted by
simple examination of the behavior of the density profile in the neighborhood of the
inflection pomt of the velocity profile. If the density profile reaches a nunumum in
the neighborhood of the inflection point of the velocity profile, stabilization of the
corresponding unstable mode is expected. If the density gradient does not vauish in
this neighborhood. we expect a minor variation in the growth rate of the unstable
mode. and a modulation of its phase speed which depends un the sign of the density
gradient. In this case. the results exhibit analogous trends to those established for
symmetric shear layers separating streams of unequal density. where unstable waves
are observed to acquire a streamwise convection component in the direction of the
high-density stream [13].

The large predicted differences in the stability properties for symmetric and
asymmetric reacting layers lead us to expect significant sensitivity of developing
reacting shear layers to initial disturbances. [n particular, if unstable modes are
excited at short distances downstream of the splitter plate, i.e. before viscous dif-
fusion leads to the destruction of the wake deficit associated with the merger of the
Blasius profiles, significant stabilization by heat release 1s not expected. Otherwise,
a sharp decrease in shear layer growth, mixing and burning efficiency is anticipated.

We finally niote that, in the parameter range considered, shear layer modes were
always found to dominate the wake modes. Thus, heat release and density variation
are not expected to produce a significant change in the shape of instability [8]. Our
results should be coutrasted with those of Koochesfahani and Frieler [1] who showed
that for large wake deficits and density differences. the initial development of the
layer can be dominated by the amplification of unstable wake modes. A stability
analysis in this flow regime was omitted, since the corresponding flow configurations
are not representative of typical reacting shear flow applications. Extension of the
parameter range to include these initial conditions is postponed to a subsequent
study which will focus on direct simulation of the developing reacting flow.
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Figure 1. Schematic sketch of a shear layer (left) and a bluff-body wake flow (right
The self-similar monotonic shear layer profile is shown in curve (a), while curves
(b) and (¢) respectively illustrate asymumetric shear layer and wake profiles. The
top (bottom) row corresponds to & = 1 (6 = 3).
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Figure 2. Velocity profiles for the fanuly of shear layers given by Eq (10), with
(W, d) combinations of Table I. The plots are respectively arranged from top for
increasing wake increasing thickness, & = 1,2, and 3. The tank profile is shown with
the & = 1 subcollection. The top (bottom) row corresponds to & = 1 (6 = 3).




corresponds to § = 1 (6 = 3).

R w1 R =2
. .
5 3
l[ ‘04-0 z£
> o > o
A 3
- -
- -4
"7 g T °F = S T i
R = ¢ TR =8
|
B . i
3 3
2 2 j
i
! > o |
- -1 1
] N
-e -.} 1
EIEEUR ] v 7 ¥ v S e S B S S S S

SC =075

~

ooy,
I 2T )

il

~

v!

SC = 02%

v
N S T SR 'S

8 <% <@ -3 -7 -7 & 1 2 3 e 8

359

Figure 3. Profiles of """ + p'U"’ /p for layers described by o = 1,6 = 1 and (a) T} = 1
(uniform-density flow); (b) 7. = 2; (¢) T, = 4; and (d) T, = 8. Similar behavior is
obtained for the larger separation disctances, § = 2 and 3. The tap (bottom) row

Figure 4. Behavior of U + p'U’/p for the velocity profiles of Fig. 2. with density
distribution given by T, = 4, and (a) ¢ = 1.5; (b) & = 0.75; (c) ¢ = 0.5; and (d)
o = 0.25. The top (bottom) row corresponds to § = 1 (6 = 3).
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Figure 6a. Growth rate vs. wavenumber of the shear layer (left) and wake (right)
modes for the velocity profiles of Fig. 2 and density profile given by 7, = 2 and
o = 1. The top (bottom) row corresponds to § = 1 (6 = 3).

0. -1 e
|
-DO 4
-1.2%¢
-0
. .
% nz o 1%
« 03 <
£ r3
3 -.'-175-
o -04 9 I3 p—
S )
2 00
-0 8
-2 25| 1
~0.7]
-04 —_— —2 89 —_—
o 02 04 [X) [T 1.0 12 1 8o 02 0¢ 06 OB 10 121 1.4 18 18 20
Wavenumber Wovenymber
L] - —— -t
=0.0|
-Ol\\ o /
_;-0.1 4 s_‘.”
@x -0 3
£ £
3 -04p 5 -
5-o3t { 8§
.oeh ~2.001
-0}
0 ~2 25|
-08p
-0 . —280 " “
00 0% 07 03 04 05 08 07 08 09 10 1! “06 01 02 03 0¢ 05 06 07 08 A9 10 W1

Wovenumber

Wovenumber

Figure 6b. Phase speed vs. wavenumber of the shear layer (left) and wake (right)
modes for the velocity profiles of Fig. 2 and density profile given by T, = 2 and
o = 1. The top (bottom) row corresponds to § = 1 (§ = 3).




362

Figure 7Ta. Growth rate vs. wavenumber of the shear iayer (left) and wake (right)
modes for the velocity profiles of Fig. 2 and density profile given by T, = 4 and
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Figure 10a. Growth rate vs. wavenumber of the shear layer (left) and wake (right)
modes for the velocity profiles of Fig. 2 and density profile given by T, = 4 and

o =0.75.
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Figure 13. Evolution of the uniform-density shear layer with velocity profile given by
W =6 =0, illustrated in terms of the vortex elements. The plots are gencrated by
drawing the location and instantaneous velocity vector of the elements at ¢ = 4 8,
and 12.

Figure 14. Vortex elenient representation of the uniform-density shear layer with
velocity profile given by W = 1.2 and 6§ = 1, at t = 3,6, and 9. The plots are
generated as in Fig. 13.




Y

Y WY W WY
et

Figure 15. Vortex element representation of the uniform-density shear layer with
velocity profile given by W = 082149 and § = 3, at t = 3,6, and 9. The plots are
generated as in Fig. 13.
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Figure 16. Vortex element representation of the shear layer with velocity profile
given by W = é = 0 and density profile having T, = 4 and o0 = 1. The plots are
generated as in Fig. 13.
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Figure 17. Vortex element representation of the shear layer with velocity profile
given by W = 1.2 and é = | and density profile having 7. = 4 and ¢ = 1 The
plots are generated as in Fig. 13. »
»
Figure 18. Vortex elemient representation of the shear layer with velocity profile ® )
given by W = 0.82149 and é = 3 and density profile having T, = 4 and ¢ = |. The
plots are generated as in Fig. 13.
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Figure 19. Vortex element representation of the shear layer with velocity profile
given by " = 6 = 0 and density profile having T, = 4 and ¢ = 0.5. The plots are
generated as in Fig. 13.
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Figure 20. Vortex element representation of the shear layer with velocity profile
given by W = 1.2 and & = 1 and density profile having 7, = 4 and ¢ = 0.5. The
plots are generated as in Fig. 13.
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Figure 21. Vortex element representation of the shear layer with velocity profile
given by W = 1.2 and 6 = 1 and density profile having 7, = 4 and ¢ = 1.5. The
plots are generated as in Fig. 13.
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